L’étude de réactions chimiques, tout comme le calcul de propriétés thermodynamiques, sont des enjeux capitaux de la chimie moderne. L’évolution des instruments et techniques expérimentales permet des mesures de plus en plus précises de ces grandeurs, pour des systèmes de plus en plus complexes. L’intérêt croissant pour l’étude du milieu interstellaire et des atmosphères planétaires se révèle également être un défi très important dans les décennies à venir. Les difficultés rencontrées lors de l’analyse de ces expériences (ou mesures), nécessitent souvent l’intervention de simulations numériques de manière à éclairer ces observations. Une autre utilisation du calcul est de prédire des paramètres moléculaires et spectroscopiques d’espèces instables difficiles à produire au laboratoire. Les outils actuels de la chimie théorique ab initio sont des moyens précieux pour la prédiction et l’interprétation de résultats expérimentaux ou de mesures astrophysiques et atmosphériques. Ces techniques de simulation ont connu des développements importants au cours des dernières décennies. Les progrès récents en matière de calculs d’interaction de configurations de grande taille permettent d’inclure une grande partie de l’énergie de corrélation. Le temps de calcul et la taille mémoire des ordinateurs restent cependant des limites importantes qui ne permettent pas d’effectuer des interactions de configurations totales dans une base suffisamment grande pour contenir la physique des systèmes étudiés au delà de petites molécules. Cet état de fait conduit à s’intéresser à des méthodes moins coûteuses comme celles des perturbations, les interactions de configurations tronquées et le Coupled Cluster, permettant d’inclure une partie de la corrélation électronique à un coût moins élevé en temps de calcul. Ce sont ces méthodes qui ont été utilisées dans ce travail pour déterminer théoriquement les paramètres moléculaires et spectroscopiques des systèmes MgO, MgO+, FeC2, FeC2+ et FeC2- avec le maximum de précision possible.Dans un premier temps, nous avons étudié la molécule MgO. C’est un système de choix car, il permet de s’initier aux méthodes de calcul ab initio sur les systèmes moléculaires les plus simples (diatomiques), de tester et de comprendre ces méthodes (différentes approximations, validité, précision, …) et de bien interpréter les résultats obtenus (formation de la liaison chimique et des états moléculaires, leur symétrie, leurs couplages, leur stabilité, leur spectroscopie, …) surtout qu’il a fait l’objet de plusieurs études théoriques et expérimentales. Pour profiter de notre savoir-faire pour les molécules diatomiques nous avons étudié le système MgO+ qui a fait l’objet de notre deuxième article que sera présenté en annexe.Dans un second temps, nous avons visé les systèmes moléculaires de type FenCm afin de comprendre la croissance et la dynamique des nanotubes de carbone catalysée par le Fer. Le système diatomique FeC fait l’objet de plusieurs études théoriques et expérimentales. La plus récente est celle fourni par Demeter Tzeli et Aristides Mavridi. Cette étude théorique a caractérisé son état fondamental ainsi que les 40 états électroniques les plus bas, à toutes les distances internucléaires jusqu’à la dissociation, et d’autre part de fournir des données spectroscopiques d’une précision comparable à celle donnée par l’expérience. Pour les systèmes d’ordre supérieur, confronté par le problème que ces petits systèmes moléculaires constitués de Fer et de Carbone ont des structures électroniques très compliquées, notre étude s’est limitée à l’étude des systèmes FeC2, FeC2+ et FeC2- / The study of chemical reactions, as well as the calculation of thermodynamic properties are critical issues of modern chemistry. The development of experimental techniques and instruments allows measurements more accurate these quantities for systems more complex. The growing interest in the study of the interstellar medium and planetary atmospheres is also proving to be a major challenge in the coming decades. The difficulties encountered in the analysis of these experiences (or measures) often require the intervention of numerical simulations to clarify these observations. Another use of the calculation is to predict molecular and spectroscopic parameters of unstable species are difficult to produce in the laboratory.Current tools of theoretical chemistry ab initio are valuable tools for the prediction and interpretation of experimental results or astrophysical measurements and atmospheric. These simulation techniques have experienced significant developments in recent decades. The recent progress in calculations of interaction of large configurations can include a large part of the correlation energy. The computation time and memory size of computers, however, remain significant limitations that do not allow to perform configuration interaction in a total base large enough to hold the physical systems studied beyond small molecules. This fact led to interest in cheaper methods such as disruption, the truncated configuration interaction and coupled cluster, allowing to include a portion of electron correlation at a lower cost in computation time. These are methods that have been used in this work to determine theoretically the molecular parameters and spectroscopic systems MgO, MgO +, FEC2, FEC2 + and FEC2-with maximum accuracy.As a first step, we studied the MgO molecule. It is a system of choice because it allows you to learn the methods of ab initio calculations on molecular systems the simplest (diatomic), test and understand these methods (different approximations, validity, accuracy, ...) and to properly interpret the results (formation of chemical bonding and molecular states, their symmetry, their interactions, their stability, spectroscopy, ...) especially since it has been the subject of several theoretical and experimental studies. To take advantage of our expertise for diatomic molecules we have studied the system MgO + has been our second article will be presented in the appendix.In a second step, we targeted molecular systems FenCm like to understand the growth and dynamics of carbon nanotubes catalyzed by iron. Diatomic system FeC been several theoretical and experimental studies. The most recent is provided by Demeter Tzeli and Aristides Mavridi. This theoretical study has characterized its ground state and the 40 lowest electronic states at all internuclear distances up to dissociation, and secondly to provide spectroscopic data with an accuracy comparable to that given by the experiment. For higher-order systems, the problem faced by these small molecular systems composed of iron and carbon have very complicated electronic structures, our study is limited to the study of systems FEC2, FEC2 + and FEC2-
Identifer | oai:union.ndltd.org:theses.fr/2012PEST1147 |
Date | 17 September 2012 |
Creators | Maatouk, Amira |
Contributors | Paris Est, Université de Tunis. Faculté des sciences de Tunis, Hochlaf, Majdi |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0059 seconds