Return to search

Numerical design of meta-materials for photovoltaic applications / Design numérique de métamatériaux pour des applications photovoltaïques

Le but de la thèse était de simuler le spectre d'absorption de méta-matériaux pour les applications photovoltaïques. Par méta-matériaux, nous entendons une assemblée d'objets de taille nanométrique situés à distance mésoscopique. L'idée sous-jacente est qu'en modifiant la taille du nano-objet et l'arrangement géométrique, on peut ajuster le seuil d'absorption. Pour calculer ces quantités, j'ai utilisé l'état de l'art du formalisme, c'est-à-dire des méthodes ab initio.La première étape du travail a été dédiée au calcul de l'absorption d'un objet isolé (tranche de silicium, graphène, hBN). Dans le cadre de codes périodiques, on utilise une supercellule avec du vide pour isoler l'objet, et une méthode a été développée précédemment dans le groupe de Spectroscopie Théorique du LSI, pour obtenir des résultats indépendants du vide. Elle est appelée Selected-G, et a été appliquée avec succès aux surfaces de silicium. Pour une tranche isolée, une expression modifiée du potentiel coulombien dans l'espace réciproque, appelé "slab potential", doit être utilisée. Pour valider l'utilisation du potentiel de slab pour le calcul de la matrice diélectrique microscopique, j'ai simulé les spectres de perte d'énergie d'électrons pour des empilements de quelques plans de graphène, et reproduit avec succès les données expérimentales disponibles. Cela a offert la possibilité d'étudier la dispersion du plasmon d'un plan de graphène, et discuter la nature des excitations électroniques dans ce système (transitions interband ou plasmon 2D).La second étape a été consacrée à l'étude du spectre d'absorption d'une assemblée de tranches en interaction. Comme il a été mis en évidence que le formalisme de supercellule agit comme une théorie de matériau moyen avec du vide, avec l'effet erroné d'avoir des spectres dépendant de la taille de la supercellule, j'ai renversé la procédure pour extraire le spectre de la tranche en interaction, affranchi du problème du vide. La faisabilité a été démontrée sur les tranches de hBN, dont le caractère semi-conducteur à large bande interdite évite les instabilités numériques.Cela a permis de comprendre la raison pour laquelle l'absorption de la tranche en interaction de silicium apparaît à plus basse énergie que celle du matériau massif: cela vient de la présence des états de surface dans la bande interdite de la structure de bandes du massif. Néanmoins, la différence avec la tranche isolée doit être encore étudiée.La troisième partie a été dédiée à l'étude de matériaux utilisés, ou candidats, aux applications photovoltaïques comme InP et InSe. J'ai étudié dans un premier temps les structures de bandes des massifs. Pour corriger la sous-estimation de la bande interdite calculée dans l'approximation de la densité locale (LDA), j'ai calculé les corrections GW, et utilisé la fonctionnelle d'échange et corrélation de Heyd-Scuseria-Ernzerhof (HSE). Le spectre d'absorption de InP massif a été calculé en résolvant l'équation de Bethe-Salpeter, qui permet de tenir compte des effets excitoniques. Comme ce calcul est très lourd numériquement, j'ai également comparé avec le calcul beaucoup plus léger de TDDFT avec le kernel à longue portée pour introduire les effets excitoniques. Pour le massif de InSe, j'ai calculé les corrections HSE pour les valeurs propres et obtenus un bon accord avec la bande interdite expérimentale. Les spectres obtenus en TDDFT, avec le kernel à longue portée, donne de bons résultats. J'ai commencé l'étude de tranches de ces deux matériaux. Des couches épaisses de InP et InSe ont été considérées et une reconstruction de surface (2x2) a été réalisée sur InP pour obtenir une surface semi-conductrice. La structure de bande LDA et les spectres d'absorption ont été calculés. Comme des systèmes d'une telle taille sont hors de portée des calculs de corrections HSE, l'étude s'est concentrés sur des tranches beaucoup plus fine de InSe. / The purpose of the thesis was to simulate the absorption spectrum of meta-materials for photovoltaic applications. By meta-material, we mean an assembly of nanometric size objects at mesoscopic distance. The underlying idea is that by adjusting the size of the nano-object and the geometric arrangement, one could tune the absorption edge. To calculate these quantities, I used state-of-the art formalism, namely ab-initio methods.The first step of the work has been dedicated to the calculation of the absorption of an isolated object (slab of silicon, graphene, hBN). In the framework of periodic codes, one uses a supercell with vacuum to isolate the object, and a method has been developed previously in the Theoretical spectroscopy group at LSI, to provide results independent of vacuum. It is called “Selectd-G” method, and was successfully applied to silicon surfaces. For an isolated slab, a modified expression of the reciprocal space Coulomb potential, called “slab potential”, must be used. To validate the use of the slab potential on the microscopic dielectric matrix, I have simulated Electron Energy Loss spectra for slabs of few graphene layers, and successfully reproduced available experimental data. This has also offered the possibility to study the plasmon dispersion of a single graphene layer, and discuss the nature of electronic excitations in the system (intraband transitions or 2D-plasmon).The second step has been dedicated to the study of the absorption spectrum of an array of interacting slabs. Since it has been evidenced that the supercell formalism acts as an effective medium theory with vacuum, with the spurious effect of having spectra dependent on the size of the supercell, I have reversed the procedure to extract the spectrum of the interacting slab, "cured" from the vacuum problem. First, the feasibility has been demonstrated on slabs of hBN, as their semi-conducting characteristics with a the large gap prevent numerical instabilities. Then, it has allowed us to understand the reason why the absorption of the interacting slab of silicon appears at lower energy than its bulk counterpart: it is due to the presence of surface states in the gap of the bulk band structure. Nevertheless, the difference with the isolated slab must be further investigated.The third part has been dedicated to the study of materials currently used or candidates for photovoltaic applications: InP and InSe. I have first studied the band structures of bulk InP and InSe. To correct for the underestimation of the band gap in the local density approximation (LDA), I have used GW corrections and the Heyd-Scuseria-Ernzerhof (HSE) exchange-correlation functional. The absorption spectrum for bulk InP has been calculated by means of the solution of the Bethe-Salpeter equation to correctly account for the excitonic effects. As expected, the experimental macroscopic function is well reproduced. Since the calculation is numerically demanding, I have also compared the results with the much lighter calculation using TDDFT where I used the long range kernel to mimic the excitonic effects. For bulk InSe, I have calculated the HSE corrections for the eigenvalues and obtained a good agreement with the experimental band gap. The spectrum obtained within TDDFT, with the long range kernel, gives satisfying results. We have started the calculations for slabs of these two materials. Thick slabs of InP and InSe have been considered and a 2x2 reconstruction have been performed for the InP slab to recover the semi-conducting surface. The LDA band structures and absorption spectra have been calculated. Then, such large systems being out of range of HSE corrections calculations, the study has been focused on much thiner slabs in the case of InSe.

Identiferoai:union.ndltd.org:theses.fr/2018SACLX117
Date04 December 2018
CreatorsIagupov, Ilia
ContributorsUniversité Paris-Saclay (ComUE), Véniard, Valérie
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0035 seconds