Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Nearly all South African abalone farms function on an intensive pump-ashore, flow-through system. Large volumes of sea water that are pumped ashore flow through abalone or kelp harvesting tanks and finally gravitate back to the ocean. If the effluent from an abalone farm can be desalinated without permanent membrane fouling, then sea water reverse osmosis (SWRO) technology can be integrated effectively with established abalone farms without having to increase the farms’ intake system capacities. Without the need to construct and maintain an intake system, the overall cost of desalination can be reduced. Therefore, the aim of this study was to determine the feasibility and viability of integrating a SWRO desalination plant with a typical South African abalone farm. The project focused on four areas of concern, namely:
- characterisation of typical South African abalone farm water
- SWRO desalination plant pilot study and membrane fouling behaviour
- general operation of a typical abalone farm and its implications for desalination
- cost estimates and implications for the integration of an SWRO desalination plant with an abalone farm
During a nine-month on-site investigation, sea water turbidity was reduced by up to 43% from a mean value of 0.82 NTU in the influent stream to 0.47 NTU in the combined effluent stream from the abalone tanks. Even with spikes in the influent turbidity, the turbidity of the combined effluent from all abalone tanks (excluding tank flush water) remained below 1 NTU. Dissolved organic carbon (DOC) in both the influent and combined effluent remained below 1 mg/litre.
Ultrafiltration (UF) was selected as pre-treatment to the reverse osmosis (RO) in order to minimise potential fouling of the RO membranes. Membrane compaction of both the UF and RO membranes contributed significantly to initial flux losses – as much as 18% for the polyethersulfone (PESM) UF membranes and 20% for the thin film composite (TFC) polyamide RO membrane. However, this is comfortably in line with typical compaction values quoted in the literature.
Without pre-flocculation, the UF was able to operate at a specific flux between 45 and 55 litre/m2/h (LMH) and recoveries ranging between 60 and 75%. Corresponding trans-membrane pressure (TMP) ranged between 0.59 and 0.76 bar. With ferric chloride pre-flocculation at a concentration of 3 mg/litre (as Fe3+) the UF could be operated at notably lower TMP values between 0.11 and 0.36 bar. These results indicate that provision should definitely be made for pre-flocculation when using UF as pre-treatment, despite the fact that the DOC concentrations and turbidity of the abalone farm effluent are quite low (DOC <1 mg/litre, NTU <1). It furthermore highlights the inability of DOC and turbidity alone to predict the membrane fouling potential of water.
A better indicator of membrane fouling potential, albeit not perfect, is the modified fouling index (MFI0.45). This index follows a linear trend with foulant concentration and serves as a good indicator of the filterability of water. On-site measurements showed an increase in mean MFI0.45 values from 29 s/litre2 for the influent to 48 s/litre2 for the effluent from the abalone tanks, thereby confirming the need for pre-flocculation as part of UF pre-treatment.
Chemically enhanced backwashing (CEB) of the UF membrane at least every 24 hours was found to be essential for its stable operation. Therefore, UF with pre-flocculation (3 mg/litre Fe3+) and regular CEB can be used effectively as pre-treatment method for the desalination of abalone farm effluent water.
An RO ‘feed-and-bleed’ system was used to simulate the typical performance of the last membrane in a full-scale RO membrane bank. This RO membrane performed well with no signs of extreme fouling. The membrane produced a good quality permeate – for the last membrane in a membrane bank – reducing the TDS of the RO feed from 33 493 mg/litre to 969 mg/litre. These results compared well with simulated values by Reverse Osmosis System Analysis (ROSA; an RO simulator by DOW), indicating a TDS reduction from 33 271 mg/litre to 1 409 mg/litre at a feed pressure of 56 bar, and overall recovery of 44%.
A steady performance of the RO membrane during the pilot study indicated that it is possible to desalinate abalone effluent water without notable permanent membrane fouling. A stable normalised flux rate of 8 LMH was achieved and RO membrane integrity remained intact with a salt rejection that ranged from 98.0 to 98.5%. No sudden reduction in permeate flux was observed as a result of fouling by unknown constituents present in the UF permeate. DBNPA (a non-oxidising disinfectant) was dosed once per week at a concentration of 10 – 30 mg/litre for 30 minutes. Scaling was controlled effectively by means of an antiscalant dosed at a concentration of 11 – 12 mg/litre in the feed stream. The CIP frequency was not optimised but a CIP frequency of once every 6 – 8 weeks appeared to be more than adequate to prevent permanent membrane fouling
Advantages of integrating an SWRO desalination plant with a South African abalone farm include:
- no lengthy and costly environmental impact assessment (EIA) is required to build a new intake system
- shared capital and operational cost of intake system
- dual incentive to keep constant good quality water flowing through the farm
- early warnings regarding occurrences such as algal bloom and red bait
- shared operational and management cost to keep pipelines clean
- electricity saved (pumps for intake system)
Disadvantages of integrating an SWRO desalination plant with a South African abalone farm include:
- will require diverting of the abalone tank wash water from regular effluent
- possible water ‘down-times’ due to maintenance operations on abalone farm
Based on information from the literature the fixed capital cost depreciation rate (FCCDR) typically contributes approximately 40% and the operation and maintenance (O&M) cost typically contributes 60% to the unit production cost (UPC) of desalinated water. Furthermore, a SWRO desalination plant’s intake system can contribute between 5% and 33% to the FCCDR, depending on the nature and design of the plant. Consequently, the intake system can contribute between 2% and 13% of the UPC of desalinated sea water. This implies possible cost savings of between R0.15/m3 and R2.37/m3 for the production of fresh water (depending on site-specific design factors) when desalinating sea water effluent from on-shore abalone tanks.
Integration of an SWRO desalination plant with a South African abalone farm is feasible and viable, provided that the necessary steps and precautions are taken to ensure a smooth and stable operation of the SWRO desalination plant. Cost savings on the part of all the stakeholders are possible if the correct contract can be negotiated. / AFRIKAANSE OPSOMMING: Byna alle Suid Afrikaanse perlemoenplase funksioneer op ‘n seewater deurvloeistelsel. Groot volumes seewater word aan wal gepomp en vloei deur die perlemoen of kelp-oes tenks. Hierdie water vloei dan uiteindelik terug na die oseaan as gevolg van swaartekrag. Indien die afvalwater van die perlemoenplase ontsout kan word sonder permanente membraanbevuiling kan seewater tru-osmose (SWTO)-tegnologie effektief met gevestigde perlemoenplase geïntegreer word sonder om die plase se water inname-stelsels se kapasiteite te vergroot. Sonder die behoefte aan uitbreiding en instandhouding van ‘n water inname-stelsel by so ‘n plaas behoort die totale koste van ontsouting aansienlik minder te wees. Die doel van hierdie studie was dus om die uitvoerbaarheid en lewensvatbaarheid van ‘n integrasie van ‘n SWTO ontsoutingsaanleg met ‘n tipiese Suid Afrikaanse perlemoenplaas te ondersoek. Ten einde dit te doen, het die projek op vier areas van belang gefokus, naamlik:
- karakterisering van tipiese Suid-Afrikaanse perlemoenplaas water
- SWTO ontsoutingsaanleg loodsstudie en membraan bevuilingsgedrag
- algemene bedryf van ‘n tipiese perlemoenplaas en die implikasies vir ontsouting
- kosteberamings en koste-implikasies met betrekking tot die integrasie van ‘n SWTO ontsoutingsaanleg met ‘n perlemoenplaas
Gedurende ‘n nege maande op-perseel ondersoek is seewater troebelheid verminder met tot 43% van 'n gemiddelde waarde van 0.82 NTU in die invloeistroom tot 0.47 NTU in die gekombineerde afvalwaterstroom wat die tenks verlaat. Selfs met skerp wisseling in die invloeistroom troebelheid, bly afvalwaterstroom troebelheid deurgaans onder 1 NTU met die uitsondering van tenk spoelwater. Opgeloste organiese koolstof (OOK) in beide die invloeistroom en die gekombineerde afvalwaterstroom het deurgaans onder 1 mg/liter gebly.
Ultrafiltrasie (UF) is gebruik as voorbehandeling vir die tru-osmose (TO) om sodoende potensiële bevuiling van TO membrane te minimaliseer. Membraan kompaksie van beide die UF en TO het merkbaar bygedra tot aanvanlike deurvloeiverliese – so veel as 18% vir die poli-etersulfoon (PESM) UF membrane en 20% vir die dun film saamgestelde (DFS) poli-amied TO membraan. Hierdie is egter gerieflik binne die tipiese kompaksiewaardes soos aangehaal in die literatuur.
Sonder flokkulasie was die UF in staat tot temperatuur aangepaste deurvloeitempo van tussen 45 en 55 liter/m2/h (LMH) teen herwinningstempo’s tussen 60 en 75%. Ooreenstemmende trans-membraandrukkings (TMD) het gewissel tussen 0.59 en 0.76 bar. Met ysterchloried voor-flokkulasie teen 'n konsentrasie van 3 mg/liter (as Fe3+) kon die UF teen merkbaar laer TMD waardes bedryf word – tussen 0.11 en 0.36 bar. Hierdie resultate dui daarop dat daar beslis voorsiening vir pre-flokkulasie gemaak moet word wanneer UF as voorbehandeling gebruik word, ten spyte van die feit dat die OOK konsentrasie en troebelheid van die afvalwater van die perlemoenplaas redelik laag is (OOK <1 mg / liter, troebelheid <1 NTU). Verder lig dit die onvermoë uit om OOK en troebelheid alleen te gebruik om membraanbevuilingspotensiaal van water te voorspel.
‘n Beter aanwyser van membraanbevuilingspotensiaal, alhoewel nie perfek nie, is die aangepaste bevuilingsindeks (MFI0.45). Hierdie bevuilingsindeks volg ‘n lineêre neiging met die konsentrasie van onsuiwerhede en dien as ‘n goeie aanwyser van die filtreerbaarheid van water. Op-perseel metings het getoon dat ‘n toename in gemiddelde MFI0.45 waardes van 29 s/litre2 vir die invloeistroom tot 48 s/litre2 vir die afvalstroom van die perlemoentenks die behoefte vir voor-flokkulasie as deel van UF voorbehandeling bevestig.
Chemies versterkte terugspoeling (CVT) van die UF membrane ten minste elke 24 uur is noodsaaklik gevind ten einde bestendige werking te verseker. Dus kan UF met voor-flokkulasie (3 mg/liter Fe3 +) en gereelde CVT effektief as voorbehandeling metode vir die ontsouting van perlemoenplaas afvalwater gebruik word.
‘n TO ‘voer-en-bloeistelsel’ is gebruik om die tipiese prestasie van die laaste membraan in ‘n volskaalse TO membraanbank te simuleer. Hierdie TO membraan het goed presteer sonder tekens van buitensporige membraanbevuiling. Vir die laaste membraan in ‘n membraanbank het die membraan goeie gehalte finale water gelewer – ‘n vermindering van die totaal opgeloste stowwe (TOS) van die TO voerwater van 33 493 mg/liter tot 969 mg/liter is behaal. Hierdie resultate het goed vergelyk met gesimuleerde waardes deur Reverse Osmosis Analysis System (ROSA, ‘n TO simulator deur DOW) wat ‘n TOS vermindering van 33 271 mg/liter tot 1 409 mg/liter by ‘n voerdruk van 56 bar en ‘n algehele herwinningstempo van 44% aandui.
‘n Bestendige werking van die TO membraan tydens die loodsstudie het getoon dat dit moontlik is om perlemoenplaas afvalwater te ontsout sonder merkwaardige permanente membraanbevuiling.
'n Stabiele genormaliseerde deurvloeitempo van 8 LMH is bereik en TO membraan integriteit het ongeskonde gebly met 'n sout verwerping wat gewissel het van 98.0 tot 98.5%. Geen skielike afname in finale water deurvloeitempo is waargeneem as gevolg van bevuiling deur onbekende onsuiwerhede in die UF finale water nie.
DBNPA (‘n nie-oksiderende ontsmettingsmiddel) is een keer per week teen ‘n ‘n konsentrasie van 10 – 30 mg / liter vir 30 minute gedoseer. Mineraal skaalvorming is effektief beheer deur die dosering van ‘n anti-skaalmiddel teen 11 – 12 mg/liter in die TO voerstroom. Die skoonmaak-in-plek (SIP) frekwensie is nie ge-optimeer nie, maar ‘n SIP een keer elke 6 – 8 weke is meer as voldoende gevind om mikrobiese bevuiling te voorkom.
Voordele van die integrasie van 'n SWTO ontsoutingsaanleg met 'n Suid-Afrikaanse perlemoenplaas sluit die volgende in:
- geen lang en duur omgewings impak ontleding (OIO) is nodig vir die bou van ‘n nuwe inname-stelsel nie
- gedeelde kapitaal en operasionele koste van inname-stelsel
- tweeledige aansporing om konstant goeie gehalte watervloei deur die plaas te verseker
- vroegtydige waarskuwings ten opsigte van gebeurtenisse soos rooigety
- gedeelde bedryfs- en bestuurskoste om voerpype skoon te hou
Nadele van die integrasie van 'n SWTO ontsoutingsaanleg met 'n Suid-Afrikaanse perlemoenplaas sluit die volgende in:
- vereis herleiding van perlemoentenk spoelwater weg van gereelde afvalwater
- moontlike watervloei-aftye weens instandhoudingsbedrywighede op die perlemoenplaas
Gebaseer op inligting uit die literatuur dra die vaste kapitaal koste waardeverminderings-koers (VKKWK) gewoonlik ongeveer 40% en die bedryfs- en instandhoudingskoste (B&I) ongeveer 60% by tot die produksiekoste per eenheid (PKE) van ontsoute water.Verder kan ’n SWTO ontsoutingsaanleg se inname-stelsel tussen 5% en 33% tot die VKKWK bydra afhangende van die aard en ontwerp van die aanleg. Gevolglik kan die inname-stelsel tussen 2% en 13% tot die PKE van ontsoute seewater bydra. Dit impliseer ‘n moontlike kostebesparing van tussen R0.15/m3 en R2.37/m3 vir die produksie van vars water wanneer die afvalwater van perlemoentenks ontsout word.
Integrasie van 'n SWTO ontsoutingsaanleg met 'n Suid-Afrikaanse perlemoenplaas is uitvoerbaar en lewensvatbaar indien die nodige stappe en voorsorgmaatreëls geneem is om ‘n vlot en bestendige werking van die SWTO ontsoutingsaanleg te verseker. Kostebesparings vir alle belanghebbendes (beleggers) is moontlik indien daar oor die korrekte kontrak onderhandel kan word.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/71601 |
Date | 12 1900 |
Creators | Steynberg, Leander Duvan |
Contributors | Burger, A. J., Stellenbosch University. Faculty of Engineering. Dept. of Process Engineering. |
Publisher | Stellenbosch : Stellenbosch University |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Type | Thesis |
Format | 262 p. |
Rights | Stellenbosch University |
Page generated in 0.0043 seconds