Packaging industries widely use Low-Density Polyethylene (LDPE) in manufacturing different types of containers to store the food products. They are difficult to model numerically in order to have similar experimental response. This research deals with the study of numerical material model parameters of continuum LDPE. It is carried out with the help of experiments along with the numerical simulation of LDPE. Study of stress-strain distribution at crack tip and elements close to the tip is carried out in the LDPE material with the pre-existing center crack with varying lengths. By implementing an optimization algorithm and automating the simulation with the help of python code, we obtain a set of parameters. This obtained data for the material can be used directly for numerical simulation in the future without carrying out additional experimental studies. After implementing the optimization algorithm is also validated, against the results that were close to the experimental response.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-13840 |
Date | January 2017 |
Creators | Kodavati, Venkata Seshank, Buraga, Devi Prasad |
Publisher | Blekinge Tekniska Högskola, Institutionen för maskinteknik, Blekinge Tekniska Högskola, Institutionen för maskinteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds