The present work aims towards the investigation of polymer degradation under biologically relevant conditions. In order to assess a potential degradation of polymers of interest for biomedical applications in vivo and associated effects on living tissue, representatives of poly(2-oxazoline)s and polypeptoids as well as poly(ethylene glycol) and poly(N-vinylpyrrolidone) for reference purposes are examined regarding their stability under oxidative and hydrolytic conditions as well as towards enzymatic degradation.
The polymers investigated in the framework of this thesis are generally considered to be non-biodegradable. Both poly(ethylene glycol) and poly(N-vinylpyrrolidone) are or were applied intensively in vivo provoking seriously harmful side effects like fatal blood poisoning from the oxidation of poly(ethylene glycol) chain ends or poly(N-vinylpyrrolidone) storage disease. Poly(2-alkyl-2-oxazoline)s and polypeptoids, both promising polymeric biomaterials for a wide variety of in vivo applications, are not clinically applied yet but undergo thorough investigations. However, comprising amide bonds within the backbone or the appending side chain, poly(2-alkyl-2-oxazoline)s and polypeptoids potentially offer a higher susceptibility towards (bio-)degradation. Representing the three most impactful initiators of degradation in vivo, the present study is focused on polymer deterioration by oxidative species, hydrolytic conditions and enzymes.
Oxidative species are generated in a variety of processes in vivo, both on purpose and as an unintentional by-product. Previous investigations revealed the susceptibility of poly(ethylene glycol), poly(N-vinylpyrrolidone), poly(2-alkyl-2-oxazoline)s and polypeptoids to deterioration by hydroxyl radicals deriving from hydrogen peroxide and copper ions. The obtained data confirm previous results of an apparent degradation rate increasing with increasing chain length due to self-inhibitory end group effects for all investigated polymer species. Although the exact concentrations of oxidative species in vivo are very controversial, with respect to their great variety and wide distribution the investigated polymers are likely prone to oxidative deterioration to some extent, with rates, mechanisms and degradation products strongly depending on the respective reactive species, polymer structure and chain length.
Like blood, most tissues of the human body benefit from a slightly alkaline pH value. Nevertheless, specific areas like the human stomach or tumor tissues possess acidic conditions potentially capable to cleave amide bonds comprised by poly(2-alkyl-2-oxazoline)s and polypeptoids. Unlike the hydrolysis of poly(2-alkyl-2-oxazoline)s resulting in side chain cleavage, the hydrolysis of polypeptoids induces backbone scission decreasing the polymer chain length tremendously and releasing, if performed exhaustively, the respective amino acids. Hydrolysis of polysarcosine is monitored by quantification of the released sarcosine via 1H-NMR spectroscopy and determination of the residual Mw via GPC. Its cyclic dimer sarcosine anhydride is formed as an intermediate product in this process via cyclization of unstable linear dimers of sarcosine.
Modification and degradation of bio(macro)molecules is an essential part of human metabolism. Polymers bearing amide bonds and showing a great similarity to natural occurring and widely distributed polypeptides, like poly(2-alkyl-2-oxazoline)s and polypeptoids, bear the potential of an enzymatic biodegradability by (more or less specific) peptidases. Just like the acidic hydrolysis described previously, peptidase activity would result in the cleavage of polymer amide bonds. The aim of the present thesis was to evaluate the stability of poly(2-alkyl-2-oxazoline)s and polypeptoids as well as poly(ethylene glycol) for the sake of reference under circumstances resembling in vivo conditions as closely as possible. Initial experiments focused on the degradation of dye-labeled upon incubation with homogenates of freshly harvested rat liver and kidney. However, although the obtained results are promising for the most part, they are considered rather unreliable and non-reproducible for various reasons. More conclusive data are attained from the incubation of non-labeled polymers in freshly laid chicken eggs. While no evidence for an enzymatic digestion of poly(ethylene glycol) in chicken egg white is found and deterioration of poly(2-methyl-2-oxazoline) upon incubation apparently derives from non-enzymatic hydrolysis, incubated polysarcosine samples reveal distinct elugram patterns depending on the respective C- and N-terminal end groups indicating both exopeptidase and endopeptidase activity. It has to be kept in mind though, that an enzymatic digestibility of polysarcosine does not necessarily imply the digestion of polypeptoids bearing longer side chains by peptidases as well, which should be investigated in further studies. / Die vorgestellte Arbeit befasst sich mit der Untersuchung des Abbauverhaltens von Polymeren unter biologisch relevanten Bedingungen. Vertreter der Poly(2-alkyl-2-oxazolin)e und Polypeptoide sowie Polyethylenglycol und Poly(N-vinylpyrrolidon) als Referenzpolymere werden im Hinblick auf ihre Stabilität unter oxidativen und hydrolytischen Bedingungen sowie gegen enzymatische Verdauung untersucht, um Rückschlüsse auf ihren potentiellen Abbau in vivo ziehen und die damit verbundenen Auswirkungen auf lebendes Gewebe abschätzen zu können. Poly(2-alkyl-2-oxazolin)e und Polypeptoide, zwei vielversprechende, jedoch noch wenig untersuchte Polymerklassen, sind als Biomaterialien für eine Vielzahl von in vivo Anwendungen interessant, werden aber bisher nicht kommerziell eingesetzt. Wie auch Polyethylenglycol und Poly(N-vinylpyrrolidon) werden Poly(2-alkyl-2-oxazolin)e und Polypeptoide als nicht bioabbaubar angesehen, was in Anbetracht der im Polymerrückgrat bzw. der davon abgehenden Seitenkette enthaltenen Amidbindungen kritisch zu hinterfragen ist.
Reaktive Sauerstoff- und Stickstoffspezies werden in vivo in einer Vielzahl von Prozessen gezielt oder auch als unerwünschtes Nebenprodukt gebildet. Vorangegangene Untersuchungen konnten bereits die Anfälligkeit von Polyethylenglycol, Poly(N-vinylpyrrolidon), Poly(2-alkyl-2-oxazolin)en und Polypeptoiden für Modifikationen durch in situ durch Reaktion von Wasserstoffperoxid und Kupferionen gebildete Hydroxylradikale zeigen. Desweiteren wiesen die Resultate auf eine starke Abhängigkeit der scheinbaren Abbaurate von der Polymerkettenlänge hin. Die erhaltenen Daten bestätigen die früheren Ergebnisse zum Anstieg der scheinbaren Abbaurate mit steigender Kettenlänge durch selbstinhibitorische Endgruppeneffekte für alle untersuchten Polymerspezies. Die tatsächlichen Konzentrationen reaktiver Sauerstoffspezies in vivo werden kontrovers diskutiert, hinsichtlich ihrer großen Vielfalt und breiten Verteilung im Körper ist es jedoch durchaus wahrscheinlich, dass die untersuchten Polymere in vivo in unterschiedlichem Maße dem oxidativen Abbau unterliegen. Dabei sind nicht nur die Abbauraten, sondern auch der Mechanismus und die entsprechend gebildeten Abbauprodukte von der Art der reaktiven Spezies, der Polymerstruktur und der entsprechenden Kettenlänge abhängig.
Blut und die meisten Gewebe des menschlichen Körpers sind auf einen leicht alkalischen pH-Wert angewiesen. Dennoch weisen spezifische Regionen wie den Magen oder Tumorgewebe ein saures Milieu auf, welches eventuell in der Lage ist, Amidbindungen, wie sie in Poly(2-alkyl-2-oxazolin)en und Polypeptoiden enthalten sind, zu spalten. Im Gegensatz zur Hydrolyse von Poly(2-alkyl-2-oxazolin)en, welche in Abspaltung der Seitenkette resultiert, kommt es bei der Hydrolyse von Polypeptoiden zur Spaltung des Polymerrückgrates, welche mit einer drastischen Verringerung der Kettenlänge und, mit fortschreitender Hydrolyse, mit der Freisetzung der entsprechenden Aminosäure einhergeht. Die Hydrolyse von Polysarkosin wird durch Quantifizierung des freigesetzten Sarkosins via 1H-NMR Spektroskopie sowie durch Bestimmung des Mw via GPC verfolgt. Dabei zeigt sich, dass sich das zyklische Dimer Sarkosinanhydrid als Zwischenprodukt der Hydrolyse durch Zyklisierung instabiler linearer Dimere bildet.
Die Modifikation und der Abbau von Bio(makro)molekülen sind essentieller Bestandteil des menschlichen Metabolismus. Polymere, die wie die Poly(2-alkyl-2-oxazolin)e und Polypeptoide Amidbindungen und damit große Ähnlichkeit zu den natürlich vorkommenden und weit verbreiteten Polypeptiden aufweisen, bergen das Potential einer möglichen Bioabbaubarkeit durch Peptidasen. Ziel der vorliegenden Arbeit war die Evaluierung der Stabilität von Poly(2-alkyl-2-oxazolin)en und Polypeptoiden sowie Polyethylenglycol als Referenzpolymer ohne Amidbindungen unter Bedingungen, welche den in vivo vorliegenden Verhältnisse möglichst ähnlich sind. In ersten Experimenten liegt der Schwerpunkt auf der Inkubation Farbstoff-markierter Polymere in Homogenaten von frisch entnommenen Rattenlebern und -nieren. Obwohl die erhaltenen Ergebnisse zum Großteil vielversprechend sind, bestehen aus einer Vielzahl von Gründen Zweifel an ihrer Zuverlässigkeit und Reproduzierbarkeit. Die Inkubation von nicht marktierten Polymeren in frisch gelegten Hühnereiern liefert aussagekräftigere Ergebnisse. Es sind keine Hinweise auf einen enzymatischen Abbau von Polyethylenglycol in Hühnereiweiß ersichtlich. Abweichungen der Elugramme des Poly(2-methyl-2-oxazolin)s deuten auf eine Modifikation während der Inkubation hin, die jedoch vermutlich nicht enzymatischen Ursprungs ist. Im Gegensatz dazu zeigen die Polysarkosin-Proben in Abhängigkeit der entsprechenden C- und N-terminalen Gruppen charakteristische Elugrammmodifikationen, welche auf die Aktivität von Exo- und Endopeptidasen hindeuten.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:15868 |
Date | January 2018 |
Creators | Ulbricht, Juliane |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds