Return to search

The Role of the Lipid Bilayer in P-glycoprotein Drug Binding, Transport and Catalytic Functions

The ABC protein P-glycoprotein (Pgp, ABCB1) transports many structurally diverse substrates from the lipid bilayer. Previous studies demonstrated the importance of the membrane environment, but few have quantified these effects. In the present work, purified Pgp reconstituted into defined lipid systems was employed. Drug binding affinities were determined using Trp quenching, and drug-lipid partitioning by equilibrium dialysis. Pgp bound substrates from the bilayer with affinities in the millimolar range; both drug-Pgp and drug-lipid interactions were important. The kinetics of Pgp-mediated drug transport were sensitive to drug structure and lipid environment. The rate of transport is proposed to depend on the affinity of Pgp for substrate and conformational changes. The lipid bilayer affected the stability of Pgp catalytic activity which provided evidence for distinct basal and drug-stimulated ATPase cycles. Overall, the lipid environment had pronounced effects on Pgp-mediated drug binding, transport and catalytic functions. / Canadian Cancer Society

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/3196
Date16 December 2011
CreatorsClay, Adam Thomas
ContributorsFrances, Sharom
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds