Classical and quantum Chern-Simons with gauge group U(1)N were classified by Belov and Moore in [BM05]. They studied both ordinary topological quantum field theories as well as spin theories. On the other hand a correspondence is well known between ordinary (2 + 1)-dimensional TQFTs and modular tensor categories. We study group categories and extend them slightly to produce modular tensor categories that correspond to toral Chern-Simons. Group categories have been widely studied in other contexts in the literature [FK93],[Qui99],[JS93],[ENO05],[DGNO07]. The main result is a proof that the associated projective representation of the mapping class group is isomorphic to the one from toral Chern-Simons. We also remark on an algebraic theorem of Nikulin that is used in this paper. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17795 |
Date | 06 September 2012 |
Creators | Stirling, Spencer |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0017 seconds