Return to search

Detección de fraudes usando técnicas de clustering

El fraude con tarjetas de crédito es uno de los problemas más importantes a los que se enfrentan actualmente las entidades financieras. Si bien la tecnología ha permitido aumentar la seguridad en las tarjetas de crédito con el uso de claves PIN, la introducción de chips en las tarjetas, el uso de claves adicionales como tokens y mejoras en la reglamentación de su uso, también es una necesidad para las entidades bancarias, actuar de manera preventiva frente a este crimen. Para actuar de manera preventiva es necesario monitorear en tiempo real las operaciones que se realizan y tener la capacidad de reaccionar oportunamente frente a alguna operación dudosa que se realice. La técnica de Clustering frente a esta problemática es un método muy utilizado puesto que permite la agrupación de datos lo que permitiría clasificarlos por su similitud de acuerdo a alguna métrica, esta medida de similaridad está basada en los atributos que describen a los objetos. Además esta técnica es muy sensible a la herramienta Outlier que se caracteriza por el impacto que causa sobre el estadístico cuando va a analizar los datos. / The credit card fraud is one of the most important problems currently facing financial institutions. While technology has enhanced security in credit cards with the use of PINs, the introduction of chips on the cards, the use of additional keys as tokens and improvements in the regulation of their use, is also a need for banks, act preemptively against this crime. To act proactively need real-time monitoring operations are carried out and have the ability to react promptly against any questionable transaction that takes place. Clustering technique tackle this problem is a common method since it allows the grouping of data allowing classifying them by their similarity according to some metric, this measure of similarity is based on the attributes that describe the objects. Moreover, this technique is very sensitive to Outlier tool that is characterized by the impact they cause on the statistic when going to analyze the data.

Identiferoai:union.ndltd.org:Cybertesis/sdx:www.cybertesis.edu.pe:80:sisbib/documents/sisbib.2010.rantes_gm-principal
Date January 2010
CreatorsRantes García, Mónica Tahiz, Cruz Quispe, Lizbeth María
ContributorsVicente De Tomás, Erick
PublisherUniversidad Nacional Mayor de San Marcos. Programa Cybertesis PERÚ
Source SetsUniversidad Nacional Mayor de San Marcos - SISBIB PERU
LanguageSpanish
Detected LanguageSpanish
Formattext/xml
RightsRantes García, Mónica Tahiz; Cruz Quispe, Lizbeth María, lmca80@hotmail.com

Page generated in 0.0021 seconds