The influence of voids on the moisture uptake of epoxy has been studied. Specimens with void contents from 0 to about 50% were prepared. Void geometry and content were analyzed using microscopy and density methods. Void containing dry samples were characterized by Differential Scanning Calorimetry and Dynamic-Mechanical Analysis which verified consistency of chemistry of the epoxy network. The moisture uptake of specimens immersed in distilled water at 40 °C was monitored. The rate of absorption and saturation moisture content increased with increasing void content. The moisture uptake of void-free and void containing specimens was non-Fickian. The Langmuir model provided good fits to the experimental results for specimens with low to medium void content, although the moisture uptake of the high void content specimens showed substantial deviations from the Langmuir diffusion model. The moisture diffusivity agreed reasonably with predications from the Maxwell inclusion model over a range of void contents from 0 to 50%. The state of sorbed water was examined using mass balance calculations and DSC analysis. Only 6-8% of the void volume is occupied by water at saturation. Absorbed water may be classified as free and bound water. For void-free specimens, only bound water was found. The medium and high void content specimens contained water in three states: free water, freezable bound water, and non-freezable bound water. The DSC results show that the proportions of free water and freezable bound water increase with increasing void content, while the content of non-freezable bound water decreased. Moisture induced swelling decreased with increasing void content. The swelling is attributed to the content of non-freezable bound water. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_40899 |
Contributors | Abdelmola, Fatmaelzahraa (author), Carlsson, Leif A. (Thesis advisor), Florida Atlantic University (Degree grantor), College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 104 p., application/pdf |
Rights | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds