The New Macroeconometrics may succinctly be described as the application of Bayesian analysis to the class of macroeconomic models called Dynamic Stochastic General Equilibrium (DSGE) models. A prominent local example from this research area is the development and estimation of the RAMSES model, the main macroeconomic model in use at Sveriges Riksbank. Bayesian estimation of DSGE models is often computationally demanding. In this thesis fast algorithms for Bayesian inference are developed and tested in the context of the state space model framework implied by DSGE models. The algorithms discussed in the thesis deal with evaluation of the DSGE model likelihood function and sampling from the posterior distribution. Block Kalman filter algorithms are suggested for likelihood evaluation in large linearised DSGE models. Parallel particle filter algorithms are presented for likelihood evaluation in nonlinearly approximated DSGE models. Prefetching random walk Metropolis algorithms and adaptive hybrid sampling algorithms are suggested for posterior sampling. The generality of the algorithms, however, suggest that they should be of interest also outside the realm of macroeconometrics.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hhs-1118 |
Date | January 2010 |
Creators | Strid, Ingvar |
Publisher | Handelshögskolan i Stockholm, Ekonomisk Statistik (ES), Stockholm : Economic Research Institute, Stockholm School of Economics (EFI) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds