Cataclysmic variable stars (CVs) are interacting binary systems. One of the stars (referred to as the primary) is a white dwarf, the other (referred to as the secondary) is usually a late main sequence star such as a red dwarf. Due to the closeness of the two stars, the white dwarf accretes gasses from the secondary. If the white dwarf does not possess a strong magnetic field, these gasses go into orbit, forming an accretion disk around the primary. If the white dwarf does possess a strong magnetic field, the gasses cannot form an accretion disk because they are entrained by the magnetic field lines. Cataclysmic variable stars in which the magnetic field is strong enough to prevent the formation of the accretion disk are called AM Herculis-type systems, after their prototype. In this study, the time-resolved spectroscopy of two AM Herculis-type binary systems, QQ Vul and EF Eri, are analyzed. In addition, Doppler Tomography, an analysis technique previously applied primarily to cataclysmic variable stars with accretion disks, is applied to these systems. / Department of Physics and Astronomy
Identifer | oai:union.ndltd.org:BSU/oai:cardinalscholar.bsu.edu:handle/186131 |
Date | January 1998 |
Creators | Blakelock, Carolyn J. |
Contributors | Kaitchuck, Ronald H. |
Source Sets | Ball State University |
Detected Language | English |
Format | v, 69 leaves : ill. ; 28 cm. |
Source | Virtual Press |
Page generated in 0.0018 seconds