Return to search

CO₂ capture using alkanolamine/room-temperature ionic liquid blends : absorption, regeneration, and corrosion aspects

Le réchauffement climatique, résultant essentiellement des émissions anthropiques de dioxyde de carbone, demeure un sujet de grande préoccupation. Le captage et la séquestration du dioxyde de carbone est une solution viable permettant de prévoir une baisse des émissions de CO2 issues des importantes sources ponctuelles qui impliquent la combustion des carburants fossiles. Dans cette perspective, les systèmes aqueux d’alcanolamines offrent une solution prometteuse à court terme pour la capture du CO2 dans les installations de production d'électricité. Cependant, ces systèmes sont confrontés à divers accrocs opératoires tels que les limitations d’équilibre, les grandes quantités d’énergie requises pour la régénération, les pertes en solvant et la corrosion prononcée des installations, pour ne citer que ces quelques inconvénients. L’eau étant la principale cause de ces complications, une mesure à prendre pourrait être le remplacement de la phase aqueuse par un solvant plus stable. Les liquides ioniques à température ambiante, dotés d’une haute stabilité thermique et pratiquement non-volatils émergent en tant que candidats prometteurs. De plus, grâce à leur nature ajustable, ils peuvent être apprêtés conformément aux exigences du procédé. La substitution de la phase aqueuse dans les processus utilisant l’alcanolamine par les liquides ioniques à température ambiante ouvre une opportunité potentielle pour une capture efficace du CO2. Un aspect remarquable de ces systèmes serait la cristallisation du produit résultant de la capture du CO2 (c-à-d, le carbamate) au sein même du liquide ionique qui non seulement déjouerait les contraintes d’équilibre mais également pourvoirait une opportunité intéressante pour la séparation des produits. Étant donné le peu d’information disponible dans la littérature sur la viabilité des systèmes utilisant la combinaison d’amine et de liquide ionique, l’étude proposée ici a pour but d’apporter une meilleure compréhension sur l’efficacité à séparer le CO2 d’un mélange de type postcombustion à travers une approche plus systématique. À cet effet, des liquides ioniques à base d’imidazolium ([Cnmim][Tf2N], [Cnmim][BF4], [Cnmim][Otf]) ont été choisis. Deux alcanolamines, à savoir, le 2-amino-2-methyl-1-propanol (AMP) et le diéthanolamine (DEA) ont été examinées en détail afin d’explorer la capture du CO2 et les possibilités de régénération qu’offre un système amine-liquide ionique. Les résultats ont révélé l’intérêt de la combinaison DEA-liquide ionique étant donné que ce système pourrait aider à réduire de manière significative l’écart entre les températures d’absorption et de régénération, promettant ainsi une perspective attrayante en termes d’économie d’énergie. En outre, les liquides ioniques ont également été scrutés du point de vue de leur nature hydrophobe/hydrophile afin d’étudier le comportement corrosif du mélange amine-liquide ionique au contact d’échantillons d’acier au carbone. Bien que l’utilisation des liquides ioniques hydrophiles ait aidé à abaisser la vitesse de corrosion jusqu’à concurrence de 72%, l’emploi de liquides ioniques hydrophobes s’avère plus efficace, car annulant quasiment le phénomène de corrosion même dans un environnement riche en CO2. Dans le cas des mélanges immiscibles comme DEA-[hmim][Tf2N], une agitation continue s’avère nécessaire afin d’assurer une dispersion prolongée des gouttelettes d’amine émulsifiées au sein de liquides ioniques et ainsi atteindre une vitesse de capture optimale. / Global warming, largely resulting from anthropogenic emissions of carbon dioxide, continues to remain a matter of great concern. Carbon capture and storage (CCS) is a viable solution to ensure a prevised fall in CO2 emissions from large point sources involving fossil fuel combustion. In this context, aqueous alkanolamine systems offer a promising near-term solution for CO2 capture from power generation facilities. However, these face several operational hitches such as equilibrium limitations, high regeneration energy requirement, solvent loss, and soaring corrosion occurrence. The main culprit in this respect is water and, accordingly, one feasible practice may be the replacement of aqueous phase with some stable solvent. Room-temperature ionic liquids (RTILs), with high thermal stability and practically no volatility, are emerging as promising aspirants. Moreover, owing to the tunable nature of ionic liquids, RTIL phase can be adapted in accordance with the process requirements. Replacing aqueous phase with RTIL in case of alkanolamine based processes provided a potential opportunity for efficient CO2 capture. The most striking aspect of these schemes was the crystallization of CO2-captured product (carbamate) inside the RTIL phase that not only helped evade equilibrium constraints but also rendered a worthy opportunity of product separation. Since there is little information available in the literature about the viability of amine-RTIL systems, the proposed research was aimed at better understanding CO2 separation proficiency of these fluids through a more systematic approach. Imidazolium RTILs ([Cnmim][Tf2N], [Cnmim][BF4], [Cnmim][Otf]) were chosen for this purpose. Two alkanolamines, 2-amino-2-methyl-1-propanol (AMP) and diethanolamine (DEA) were examined in detail to explore CO2 capture and regeneration capabilities of amine-RTIL systems. The results revealed the superiority of DEA-RTIL combination as this scheme could help significantly narrow the gap between absorption and regeneration temperatures thus promising a sparkling prospect of attenuating energy needs. Furthermore, ionic liquids were scrutinized in reference to their hydrophobic/hydrophilic nature to study the corrosion behaviour of carbon steel in amine-RTIL media. Though hydrophilic ionic liquids helped decrease corrosion occurrence up to 72%, hydrophobic RTIL appeared to be the most effective in this regard, virtually negating the corrosion phenomenon under CO2 rich environment. In case of immiscible blends like DEA-[hmim][Tf2N], continual agitation appeared to be a necessity to ensure a prolonged dispersion of amine in the RTIL phase and, thereby, to attain an optimal capture rate.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/24209
Date19 April 2018
CreatorsHasib-ur-Rahman, Muhammad
ContributorsLarachi, Faïcal, Siaj, Mohamed
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format192 p., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0152 seconds