A semiconductor optical source monolithically integrated with a surface acoustic wave (SAW) Bragg-cell to operate as a functional device is proposed in this thesis. The practical structure of such an integrated device is demonstrated and design guidelines are presented. Compared with conventional optical beam processed devices, this functional integrated semiconductor optical source (FISOS) is revised to be compact in size, flexible in function and potentially robust in performance. <br /> The FISOS is analyzed as two sub-divisions, optical source and acoustic processor, which have the common substrate structure. The optical beams excited from the optical source part of the device undergoes a scattering in the Bragg grating formed by SAWs that are generated by an IDT positioned on top of the acoustic processing part of device. By altering the property (power, frequency, etc.) of the SAW, versatile functionalities such as modulation, filtering, beam steering and so on of the optical beams can be realized in this optical source device. <br /> A multilayer structure based on GaN/InGaN MQWs grown on sapphire is designed for the FISOS to be blue light emitting and efficiently launching SAWs. An etch-down technique employed in the SAW processing part is taken to improve the overlap between the optical and acoustic waves and then the interaction efficiency. Optimizations to the geometrical dimensions of the FISOS, such the width of the ridge waveguide, the position of the IDT and the etching depth, etc., are discussed in the given structure. <br /> Numerical models are investigated to access the operational characteristics and then to provide design guidelines for the proposed integrated device. The Bragg diffraction of optical waves occurring within the acoustic waves in the proposed structure are simulated as a two-dimensional interaction between two guided optical modes and an acoustic surface wave. <br /> The modal distributions and propagation velocities of SAWs in a multilayer system are calculated using Adler’s matrix method. The electrical characteristics of an IDT, such as impedance, insertion loss, electromechanical constant and so on are also discussed. <br /> Transverse and lateral optical modes in the given multilayer structure are analyzed by the transfer matrix method. The interaction of optical waves and acoustic waves are modeled using the rigorous grating diffraction theory. Starting from Floquet’s theory, the well-known coupled-wave method and modal method can both be derived from the rigorous grating diffraction theory. Discussions of some useful approximate methods are also presented. In this thesis, the simulations of the acoustooptic interaction are performed using the coupled-wave method. <br /> From the simulation results, the angular distribution profile and spatial profile of the output of the FISOS are evaluated. An improvement to the expression of the diffraction efficiency in such an integrated device is proposed. The so-called beam diffraction efficiency gives a more complete measure to the acoustooptic diffraction and is used to investigate the features of FISOS different from conventional acoustooptic devices. Contour plots of the beam efficiency varying with acoustic frequency and power in a FISOS is demonstrated to be a convenient and powerful approach in the device design. <br /> The operational performances of an integrated deflector and a modulator in FISOS are analyzed to investigate the feasibility of FISOS. The trade-off of the efficiency-resolution in an integrated deflector design is discussed. Short interaction length, high acoustic frequency and narrow ridge are proved to be helpful for a larger number of resolvable spots with a fairly high efficiency. In the case of the integrated modulator, given that the figure of merit Q is fixed, it is demonstrated that the smaller the Q, the longer the interaction length, larger ridge width and lower acoustic frequency will give rise to a larger bandwidth, though the highest efficiency might appear at a higher frequency. <br /> Some practical issues such as the misalignment of planar elements on the device and the incoherence of the integrated optical source are also discussed. A modified working frequency can be used to compensate the efficiency loss in the former case; in the latter case, it is demonstrated that a distortion of beam diffraction efficiency versus acoustic power with an incoherent optical source arises due to the wide spectrum of the incident optical waves.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:518122 |
Date | January 2009 |
Creators | Meng, Qingbin |
Contributors | Causa, Federica ; Sarma, Jayanta |
Publisher | University of Bath |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.002 seconds