Return to search

Exploring the movement of DIR1 into the phloem during SAR and identification of genes upregulated during SAR induction

Plants respond to pathogens both locally at the site of infection, as well as systemically in distant leaves. Systemic Acquired Resistance (SAR) is an immune response that involves the long-distance transport of SAR signal via the phloem from the site of infection to distant, uninfected leaves to establish long-lasting resistance. The Arabidopsis thaliana Defective in Induced Resistance 1 (DIR1) protein, which is required for SAR, accesses the phloem during SAR for long-distance travel to systemic leaves, and is thought to be part of a SAR signal complex. However, many questions remain about the long-distance movement of DIR1 during SAR – including the cellular route travelled to reach the phloem and whether other proteins are required for DIR1 movement. Fluorescent fusion lines of DIR1 and the related protein DIR1-like were previously created were investigated as potential tools to trace the movement of DIR1/DIR1-like during SAR. Immunoblot analysis of leaf extracts from these DIR1/DIR1-like fluorescent fusion lines revealed no signal, indicating that no fusion protein was present in these lines and therefore, they were likely not useful as a tool for assessing the movement of DIR1/DIR1-like during SAR. Lipid Transfer Protein 2 (LTP2) is required for SAR and interacted with DIR1 in a yeast-two-hybrid assay. To investigate if LTP2 is required for DIR1 movement into the phloem and long-distance, DIR1 signal was investigated by immunoblotting of phloem exudates from SAR induced ltp2-1 mutant plants. The presence of DIR1 signal in phloem exudates of local ltp2-1 leaves but not distant ltp2-1 leaves suggested that LTP2 may be required for the long-distance movement of DIR1 during SAR, but not for DIR1 to enter the phloem in induced leaves.
Gene expression changes in the systemic, uninfected leaves are associated with the establishment of SAR, however, it remains less clear if there is a core set of genes important for SAR induction upregulated at the initial site of infection. To investigate this question, SAR was induced through differing treatments that first activated the PAMP-triggered immunity (PTI) pathway or Effector-triggered immunity (ETI) pathway. Common genes upregulated between all three SAR-inducing treatments were identified, revealing genes previously and currently under investigation by the Cameron lab, as well as genes that represent candidates for possible future studies. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/30377
Date11 1900
CreatorsBrookman, Rowan
ContributorsCameron, Robin, Biology
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.005 seconds