[Truncated abstract] The extent to which marine populations are connected by larval dispersal is crucial to their distribution, maintenance and diversity. Thus, for the effective conservation of threatened systems such as coral reefs, understanding patterns of connectivity is essential. However, the biophysical mechanisms that retain or disperse larvae within and among populations are poorly understood. Though the open ocean environment provides the opportunity for long-distance dispersal, if this potential is only rarely realised, recruits produced from afar are unlikely to contribute to the local-scale demography of populations over ecological time frames, but will limit broad-scale genetic diversification over evolutionary time. This thesis explores the extent of genetic and demographic connectivity of two species of reef-building corals over a range of spatial scales among the discontinuous reef systems of northwest Australia. ... Putative source and sink dynamics were not random, but were associated with levels of disturbance and recovery from a recent and catastrophic coral bleaching. When S. hystrix samples from another two offshore systems were included in the analysis, large differences among systems showed that gene flow over hundreds of kilometres is rare over microevolutionary time scales that account for connections over multiple generations. Levels of subdivision over the same spatial scales were markedly lower in the acroporid coral, Acropora tenuis, than in S. hystrix. These results are congruent with expectations based on reproductive mode; in contrast to S. hystrix, which releases brooded larvae that are competent to settle immediately, A. tenuis broadcasts its gametes, and after external fertilisation, the larvae need to develop for several days before they are competent to settle. Despite the differences in levels of broad-scale subdivision, in both species significant differentiation was detected between reefs within systems (>10 km), and between sites within some reefs (< 10 km). These results indicate not only that dispersal between reefs and even some reef patches is restricted, but also that hydrodynamics influence retention of brooded and spawned larvae in similar ways. Further analysis of A. tenuis populations from two coastal systems detected significant differences in genetic diversity among the four major systems of northwest Australia. Additionally, genetic divergence between the coastal and offshore zones was greater than expected by the geographic separation of systems, indicating that connectivity between these zones via transport of A. tenuis larvae on oceanic currents occurs rarely even over microevolutionary time scales. This study has two primary implications for conservation. First, since coastal and offshore reefs of northwest Australia appear to be discrete genetic entities, they have independent evolutionary potential to adapt to local conditions and environmental change. Second, systems, reefs and some reef patches of northwest Australia are demographically independent units. Therefore, designs of coral reserve networks should consider routine dispersal distances of kilometres to a few tens of kilometres.
Identifer | oai:union.ndltd.org:ADTP/194817 |
Date | January 2008 |
Creators | Underwood, Jim |
Publisher | University of Western Australia. School of Animal Biology |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Jim Underwood, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0013 seconds