Coral reefs are an important element of marine ecosystem that are critical to maintain a healthy environment. Unfortunately, in recent years coral reefs are doing poorly and many in parts of the ocean are simply dying. Therefore, study of coral’s structural response to external loads could answer what will happen with their structures, while they exhibit different types of loading. Therefore, the proposition of using in-situ micro-Raman spectroscopy to study skeletons of Acropora cervicornis was used. Coral skeleton samples I subjected to mechanical loading studied their vibrational properties by exciting the material with 532nm visible light. A uniaxial compressive load I applied using a MTS universal testing machine and then using the Raman Spectroscopy to study the vibrational response of coral skeletons. Indentations used Vickers Hardness tester and performed 2D mapping of the coral structure around the indentation. If it’s expected that as a result of the proposed research the better understanding of structural stability of the Acropora Cervicornis coral skeletons will be achieved.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses-1293 |
Date | 01 January 2018 |
Creators | Shepard, Zachary C |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Honors Undergraduate Theses |
Page generated in 0.0021 seconds