Return to search

Studies On Polymer Hydrogel Electrolytes For Application In Electrochemical Capacitors And Direct Borohydride Fuel Cells

In recent years, electrochemical capacitors have emerged as devices with the potential to enable major advances in electrical energy storage. Electrochemical capacitors (ECs) are akin to conventional capacitors but employ higher surface-area electrodes and thinner dielectrics to achieve larger capacitances. This helps ECs to attain energy densities greater than those of conventional capacitors and power densities greater than those of batteries. Akin to conventional capacitors, ECs also have high cycle-lives and can be charged and discharged rapidly. But ECs are yet to match the energy densities of mid to high-end batteries and fuel cells.
On the basis of mechanism involved in the charge-storage process, ECs are classified as electrical double-layer capacitors (EDLCs) or pseudocapacitors. Charge storage in EDLCs and pseudocapacitors is brought about by non-faradaic and faradaic processes, respectively. Faradaic process, such as an oxidation-reduction reaction, involves the transfer of charge between electrode and electrolyte. By contrast, a non-faradaic process does not use a chemical mechanism and charges are distributed on surfaces by physical processes that do not involve any chemical reaction.
ECs employ both aqueous and non-aqueous electrolytes in either liquid or solid form, the latter providing the advantages of freedom from leakage of any liquid component, compactness, reliability and large operating potential-window. In the literature, polymer electrolytes are the most widely studied solid electrolytes. Complexation of functional-groups of certain polymers with cations results in the formation of polymer-cation complexes commonly referred to as solid-polymer electrolytes (SPEs). Mixing a polymer with an alkali metal salt dissolved in an organic solvent result in the formation of a polymer gel electrolyte. Organic solvents with low molecular-weights, such as ethylene carbonate and propylene carbonate, employed in polymer gel electrolytes are commonly referred to as plasticizers. When water is used as a plasticizer, the polymer electrolyte is called a polymer hydrogel electrolyte.
Part I of the thesis is directed to studies pertaining to Polymer Hydrogel Electrolytes for Electrochemical Capacitors and comprises four sections. After a brief survey of literature on polymer hydrogel electrolytes employed in ECs in Section I.1, Section I.2 of Part I describes the studies on electrochemical capacitors employing cross-linked poly (vinyl alcohol) hydrogel membrane electrolytes with varying perchloric acid dopant concentration. Acidic poly (vinyl alcohol) hydrogel membrane electrolytes (PHMEs) with different perchloric acid concentrations are prepared by cross-linking poly (vinyl alcohol) with glutaraldehyde in the presence of a protonic acid acting as a catalyst under ambient conditions. PHMEs are characterized by scanning electron microscopy and temperature-modulated differential scanning calorimetry in conjunction with relevant electrochemical techniques. An optimised electrochemical capacitor assembled employing PHME in conjunction with black pearl carbon (BPC) electrodes yields a maximum specific capacitance value of about 96 F g-1, phase angle value of about 79o and a discharge capacitance value of about 88 F g-1. Section I.3 of Part I describes the studies on cross-linked poly (vinyl alcohol)/ploy (acrylic acid) blend hydrogel electrolytes for electrochemical capacitors. Acidic poly (vinyl alcohol)/poly (acrylic acid) blend hydrogel electrolytes (BHEs) have been prepared by cross-linking poly (vinyl alcohol)/poly (acrylic acid) blend with glutaraldehyde in presence of perchloric acid. These acidic BHEs have been treated suitably to realize alkaline and neutral BHEs. Thermal characteristics and glass-transition behavior of BHEs have been followed by differential scanning calorimetry. Ionic conduction in acidic BHEs has been found to take place by Grötthus-type mechanism while polymer segmental motion mechanism is predominantly responsible for ion motion in alkaline and neutral BHEs. Ionic conductivity of BHEs has been found to range between 10-3 and 10-2 S cm-1 at 298 K. Electrochemical capacitors assembled with acidic PVA hydrogel electrolyte yield a maximum specific capacitance of about 60 and 1000 F g-1 with BPC and RuOx.xH2O/C electrodes, respectively. Section I.4 of Part I describes the studies on gelatin hydrogel electrolytes and their application to electrochemical capacitors. Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde under ambient conditions, and characterized by scanning electron microscopy, temperature-modulated differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 340 and 377 K depending on the dopant concentration. Ionic conductivity behavior of GHEs is studied with varying concentrations of gelatin, glutaraldehyde and NaCl, and conductivity values are found to vary between 10-3 and 10-1 S cm-1 under ambient conditions. GHEs have a potential window of about 1 V with BPC electrodes. The ionic conductivity of pristine and 0.25 N NaCl-doped GHEs follows Arrhenius behavior with activation energy values of 1.9×10-4 and 1.8×10-4 eV, respectively. Electrochemical capacitors employing GHEs in conjunction with black pearl carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of about 81 F g-1, 75o, and 0.03 s are obtained for 3 M NaCl-doped GHE, respectively. EC with pristine GHE exhibits continuous cycle life for about 4.3 h as against 4.7 h for the electrochemical capacitor with 3 M NaCl-doped GHE.
Unlike electrochemical capacitors, fuel cells do not store the charge internally but instead use a continuous supply of fuel from an external storage tank. Thus, fuel cells have the potential to solve the most challenging problem associated with the electrochemical capacitors, namely their limited energy-density. A fuel cell is an electrochemical power source with advantages of both the combustion engine and the battery. Like a combustion engine, a fuel cell will run as long as it is provided with fuel; and like a battery, fuel cells convert chemical energy directly to electrical energy. As an electrochemical power source, fuel cells are not subjected to the Carnot limitations of combustion (heat) engines. A fuel cell operates quietly and efficiently and, when hydrogen is used as a fuel, it generates only power and potable water. Thus, a fuel cell is a so called ‘zero-emission engine’.
In the past, several fuel cell concepts have been tested in various laboratories but the systems that are being potentially considered for commercial developments are: (i) Alkaline Fuel Cells (AFCs), (ii) Phosphoric Acid Fuel Cells (PAFCs), (iii) Polymer Electrolyte Fuel Cells (PEFCs), (iv) Solid-Polymer-Electrolyte-Direct Methanol Fuel Cells (SPE-DMFCs), (v) Molten Carbonate Fuel Cells (MCFCs) and (vi) Solid Oxide Fuel Cells (SOFCs).
Among the aforesaid systems, PEFCs that employ hydrogen as fuel are considered attractive power systems for quick start-up and ambient-temperature operations. Ironically, however, hydrogen as fuel is not available freely in the nature. Accordingly, it has to be generated from a readily available hydrogen carrying fuel such as natural gas, which needs to be reformed. But, such a process leads to generation of hydrogen with some content of carbon monoxide, which even at minuscule level is detrimental to the fuel cell performance. Pure hydrogen can be generated through water electrolysis but hydrogen thus generated needs to be stored as compressed / liquefied gas, which is cost-intensive. Therefore, certain hydrogen carrying organic fuels such as methanol, ethanol, propanol, ethylene glycol, and diethyl ether have been considered for fuelling PEFCs directly. Among these, methanol with a hydrogen content of about 13 wt. % (specific energy = 6.1 kWh kg-1) is the most attractive organic liquid. PEFCs using methanol directly as fuel are referred to as SPE-DMFCs. But SPE-DMFCs suffer from methanol crossover across the polymer electrolyte membrane, which affects the cathode performance and hence the cell performance during its operation. SPE-DMFCs also have inherent limitations of low open-circuit-potential and low electrochemical-activity. An obvious solution to the aforesaid problems is to explore other promising hydrogen carrying fuels such as sodium borohydride, which has a hydrogen content of about 11 wt. %. Such fuel cells are called direct borohydride fuel cells (DBFCs).
Part II of the thesis includes studies on direct borohydride fuel cells and comprises three sections. After a brief introduction to DBFCs in section II.1, Section II.2 describes studies on an alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. A peak power density of about 150 mW cm-2 at a cell voltage of 540 mV could be achieved from the optimized DBFC operating at 70oC. Section II.3 describes studies on poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells. This DBFC employs a poly (vinyl alcohol) hydrogel membrane as electrolyte, an AB5 Misch metal alloy as anode, and a gold-plated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. The performance of the PHME-based DBFC in respect of peak power outputs, ex-situ cross-over of oxidant, fuel, anolyte and catholyte across the membrane electrolytes, utilization efficiencies of fuel and oxidant as also cell performance durability under ambient conditions are compared with a similar DBFC employing a Nafion®-117 membrane electrolyte (NME). Peak power densities of about 30 and 40 mW cm-2 are observed for the DBFCs with PHME and NME, respectively. The PHME and NME-based DBFCs exhibit cell potentials of about 1.2 and 1.4 V, respectively, at a load current density of 10 mA cm-2 for 100 h.














































Publications of Nurul Alam Choudhury

1. Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors, N. A. Choudhury, S. Sampath, and A. K. Shukla, J. Electrochem. Soc., 155 (2008) A74.
2. Cross-linked polymer hydrogel electrolytes for electrochemical capacitors, N. A. Choudhury, A. K. Shukla, S. Sampath, and S. Pitchumani, J. Electrochem. Soc., 153 (2006) A614.
3. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, N. A. Choudhury, S. Sampath, and A. K. Shukla, Energy and Environmental Science (In Press).
4. Cross-linked poly (vinyl alcohol) hydrogel membrane electrolytes with varying perchloric acid dopant concentration and their application to electrochemical capacitors, N. A. Choudhury, S. Sampath, and A. K. Shukla, J. Chem. Sc. (Submitted)
5. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, N. A. Choudhury, R. K. Raman, S. Sampath, and A. K. Shukla, J. Power Sources, 143 (2005) 1.
6. Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells, N. A. Choudhury, S. K. Prashant, S. Pitchumani, P. Sridhar, and A. K. Shukla, J. Chem. Sc. (Submitted).
7. A phenyl-sulfonic acid anchored carbon-supported platinum catalyst for polymer electrolyte fuel cell electrodes, G. Selvarani, A. K. Sahu, N. A. Choudhury, P. Sridhar, S. Pitchumani, and A. K. Shukla, Electrochim. Acta, 52 (2007) 4871.
8. A high-output voltage direct borohydride fuel cell, R. K. Raman, N. A. Choudhury, and A. K. Shukla, Electrochem. Solid-State Lett., 7 (2004) A 488.
9. Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells, A. K. Shukla, R. K. Raman, N. A. Choudhury, K. R. Priolkar, P. R. Sarode, S. Emura, and R. Kumashiro, J. Electroanal. Chem., 563 (2004) 181.

  1. http://hdl.handle.net/2005/790
Identiferoai:union.ndltd.org:IISc/oai:etd.ncsi.iisc.ernet.in:2005/790
Date10 1900
CreatorsChoudhury, Nurul Alam
ContributorsShukla, A K, Sampath, S
Source SetsIndia Institute of Science
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationG22591

Page generated in 0.0044 seconds