This project aims to classify different units on a wireless network with the use of their frequency response. This is in purpose to increase security when communicating over WiFi. We use a convolution neural network for finding symmetries in the frequency responses recorded from two different units. We used two pre-recorded sets of data which contained the same units but from two different locations. The project achieve an accuracy of 99.987%, with a 5 hidden layers CNN, when training and testing on one dataset. When training the neural network on one set and testing it on a second set, we achieve results below 54.12% for identifying the units. At the end we conclude that the amount of data needed, for achieving high enough accuracy, is to large for this method to be a practical solution for non-stationary units.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-254255 |
Date | January 2019 |
Creators | Nyström, Jonatan |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2019:139 |
Page generated in 0.0022 seconds