Return to search

Machine Learning Methods for Predicting Trading Behaviour of an Actively Managed Mutual Fund

This paper aims to reverse engineer the tradingstrategy of an actively managed mutual fund by identifyingtechnical patterns in their trading. Investment strategies formany institutional investors consists of both fundamental andtechnical analysis. The purpose of the paper is to explore towhich extent the latter can be used to predict the trading actionsby taking some commonly used technical indicators as input invarious machine learning algorithms to assess patterns betweenthem and the trading of the fund. Furthermore, the technicalindicators’ ability to predict future prices is analysed using thesame methods. The results are not sufficiently clear to suggestthat the fund uses technical indicators to begin with, let alonewhich ones. As for the prediction of future prices, the technicalindicators appear to have some predictive ability. / Syftet med denna rapport är att prediktera handeln i en aktivt förvaltad aktiefond med hjälp av fyra maskininlärningsmetoder. Investeringsstrategier kombinerar i regel två analysmetoder, fundamental respektive teknisk analys. Avsikten med rapporten är att utforska huruvida det sistnämnda kan användas för att förutspå fondens handel genom att använda ett antal vanligt förekommande tekniska indikatorer och medelst maskininlärningsmetoder söka efter mönster mellan dessa och handeln. Vidare innefattar även studien en analys över hur väl tekniska indikatorer predikterar upprespektive nedgångar på aktiepriser. Vad gäller investeringsstrategierna återfanns inga tydliga samband mellan de utvalda indikatorerna och transaktionerna. Resultaten för andra delen av studien tyder på viss prediktiv förmåga för tekniska indikatorer på marknadsrörelser. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-307641
Date January 2021
CreatorsForslund, Herman, Johnson, Marcus
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:150

Page generated in 0.0022 seconds