Oil is a finite resource; This much has been established as fact and is commonly agreed upon. We will, some day, find our supplies depleted. The question that remains hotly debated, however, is when this will happen and what impacts it will have on our modern lives. Estimates and forecasts abound, but still no one can answer these questions definitively. As fossil fuels, the energy behind virtually every aspect of our lives, become scarce, our patterns of growth will face a reckoning. We will be forced to adapt and adjust; either shifting our energy demand to more renewable sources, or reducing it by significant amounts. Although there are a plethora of what-if scenarios when predicting the effects of an end to oil, it’s easy to recognize that the peak oil crisis will significantly impact our lives. It will change how we live them and, by extension, where and how we construct our buildings. So what does this mean for buildings - one of the country’s largest consumers of energy? This thesis proposes that a theory of adaptability, when applied properly to the design and construction process, can begin to equip our building to handle the range of possible outcomes that an energy-poor future poses. This thesis also aims to address, in the broadest of terms, how our current approach to design could lead to significant issues in a post-oil, energy hungry world. It does so by encouraging a more holistic approach to problem solving and building design, while outlining how the values of cost efficiency and speed have polarized global construction techniques.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-1981 |
Date | 01 January 2012 |
Creators | Pelland, Justin M |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses 1911 - February 2014 |
Page generated in 0.0023 seconds