This thesis first describes the Lasso method and its adaptive improvement. Then the basic theoretical properties are shown and different algorithms are introduced. The main part of this thesis is application of the Lasso method to AR, MA and ARCH time series and to REGAR, REGMA and REGARCH models. An algorithm of the adaptive Lasso in a more general time series model, which includes all above mentioned models and series, is developed. The properties of methods and algorithms are shown on simulations and on a practical example. Powered by TCPDF (www.tcpdf.org)
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:323055 |
Date | January 2014 |
Creators | Holý, Vladimír |
Contributors | Prášková, Zuzana, Hendrych, Radek |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds