Return to search

Adaptatividade em aprendizagem de máquina: conceitos e estudo de caso. / Adaptivity in machine learning: Concepts and case study.

A aprendizagem incremental requer que o mecanismo de aprendizagem seja baseado no acúmulo dinâmico da informação extraída das experiências realizadas. A aprendizagem de máquina usando adaptatividade considera a integração de técnicas de aprendizagem de máquina simbólicas com técnicas adaptativas para a solução de problemas de aprendizagem. A palavra adaptatividade sugere a capacidade de modificação do conjunto de regras aprendidas em resposta a eventos que podem ocorrer durante o processo de aprendizagem, ou então autoajustes no conjunto de parâmetros. Os dispositivos adaptativos que possuem a capacidade de reter em suas regras informações extraídas de suas entradas podem acumular informações, para que sejam utilizadas quando forem necessárias. As estratégias de interesse para a incorporação da adaptatividade incluem a utilização de métodos e técnicas de aprendizagem de máquina, em particular as que implementam aprendizado supervisionado e tomada de decisão. O objetivo deste trabalho é explorar a utilização de técnicas adaptativas no processo de aprendizado por máquina, tanto de forma exclusiva como em conjunto com outras técnicas de aprendizagem. Para atingir este objetivo, propõe-se aqui a utilização de dispositivos adaptativos para representar o conhecimento adquirido através da aprendizagem incremental. Além disso, é feito um estudo de caso que combina aprendizagem de máquina com técnicas adaptativas para implementar um esquema de aprendizagem autônoma de estratégias, com o objetivo de vencer uma particular instância do jogo que é apresentado. A aprendizagem de um jogo exige a tomada de decisão, que é um processo complexo e dinâmico. Com a finalidade de fornecer um substrato geral para a criação, manipulação e análise de regras em problemas de tomada de decisão, utilizando tabelas de decisão adaptativas, a ferramenta de software Adapt-DT foi implementada. Um exemplo ilustrativo utilizando tabelas de decisão adaptativa como meio para a representação de conhecimento é apresentado, para exercitar a utilização da ferramenta. Isto permite concluir que os dispositivos adaptativos podem ser utilizados para representar o conhecimento adequadamente, com vantagens sobre outros métodos tradicionais. / Incremental learning requires a learning mechanism based on the information extracted from dynamically accumulated experiments. Adaptivity-oriented machine-learning combines adaptive techniques with symbolic ones for solving machine-learning problems. The term adaptivity means the ability of a learning process to change its own set of rules in response to events occurred during the learning process, or, equivalently, self-tuning the set of parameters. The adaptive devices with withhold information ability inside their rules, extracted from input from their own set of rules, can accumulate information to be used whenever they are necessary. The strategies of interest to adopt adaptivity include the use of machine learning techniques and methods, particularly the ones that implement supervised learning and decision-making. This work purposes to investigate the application of adaptive techniques in machine learning process, either exclusively and in cooperation with other techniques. In order to achieve this target, the use of adaptive devices to represent the knowledge gathered through incremental learning is proposed. Additionally, a case study that combines both machine learning and adaptive techniques to implement a scheme of autonomous learning strategies is also performed with the goal of winning an instance of the simple game. Decision-making is required to learning how to play a game, which is a complex and dynamic process. So as to provide a general framework for the creation, manipulation and analysis of rules in decision-making problems using adaptive decision tables, the Adapt-DT tool was implemented. An illustrative example using adaptive decision tables as a means to represent knowledge is introduced to the tool evaluation. This supports the conclusion that adaptive devices can be used to adequately represent the knowledge, with advantages over other traditional methods.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02072012-175054
Date21 October 2011
CreatorsStange, Renata Luiza
ContributorsJosé Neto, João
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0023 seconds