We prove various results in additive combinatorics for subsets of random sets. In particular we extend Sarkozy's theorem and a theorem of Green on long arithmetic progressions in sumsets to dense subsets of random sets with asymptotic density 0. Our proofs require a transference argument due to Green and Green-Tao which enables us to apply known results for sets of positive upper density to subsets of random sets which have positive relative density. We also prove a density result which states that if a subset of a random set has positive relative density, then the sumset of the subset must have positive upper density in the integers.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/2838 |
Date | 11 1900 |
Creators | Hamel, Mariah |
Publisher | University of British Columbia |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0022 seconds