O objetivo desta pesquisa foi propor um método capaz de estabelecer a sequência de implantação de um conjunto de faixas adicionais que maximize os benefícios do investimento nos aclives das rodovias de pista simples. O método proposto consiste em: (i) definir os aclives mais longos que o comprimento crítico; (ii) definir os aclives que satisfazem os critérios técnico-econômicos para implantação das faixas adicionais no horizonte de projeto; (iii) determinar as faixas adicionais que devem ser implantadas a cada ano do projeto, em função do crescimento do tráfego; e (iv) determinar a sequência ótima para implantação das faixas, em função do benefício global e do valor disponível para investimento a cada ano. Dentre os critérios técnicos que indicam a necessidade de faixa adicional, optou-se por utilizar a adaptação das diretrizes da AASHTO para as condições das rodovias brasileiras proposta por Melo e Setti (2003). Para quantificar os benefícios proporcionados pelas reduções dos custos operacionais e dos tempos de viagem, optou-se por utilizar modelos desenvolvidos por pesquisas nacionais; para quantificar os benefícios da redução dos acidentes, foi utilizado o modelo do HDM-4. Custos típicos de construção por quilômetro de faixa adicional (serviços de terraplenagem, pavimentação, drenagem e sinalização) foram obtidos da tabela do DER-SP. Um estudo de caso demonstrou que a sequência de implantação estabelecida pelo método proposto é mais eficiente, pelos pontos de vista econômico e social, do que a sequência determinada usando-se os critérios atuais. / The objective of this research was to propose a methodology able to establish the sequence of deployment that would maximize the benefits from climbing lanes on two-lane highways. The proposed method consists of: (i) find the set of grades that are longer than the critical length; (ii) choose, among these grades, those that satisfy the technical and economic criteria to warrant the construction of climbing lanes within the project service life; (iii) find which climbing lanes should be built in each year, given the traffic growth forecast; and (iv) find the best construction sequence, considering the global benefits from the climbing lanes and the annual budget. The criteria to justify climbing lanes adopted are the adaptation to Brazil of the AASHTO criteria proposed by Melo and Setti (2003). The quantification of benefits from the reduction of vehicle operating costs and travel time uses several models proposed in the literature in Portuguese; HDM-4 models were used to quantify the benefits from the reduction in accident number and severity. Typical construction costs for climbing lanes (including earth-moving, paving, drainage and signage) were derived from data published by DER-SP. A case study demonstrated that the application of the proposed method results in a more efficient use of the available resources (both from the economic and social viewpoints) than the results obtained by the use of the current criteria.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-14092010-093115 |
Date | 02 August 2010 |
Creators | Francisco Arcelino Araújo Lima |
Contributors | José Reynaldo Anselmo Setti, Felipe Issa Kabbach Junior, Ricardo Almeida de Melo |
Publisher | Universidade de São Paulo, Engenharia de Transportes, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0044 seconds