Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions. Classical tomography fails to reconstruct the optical properties of thick scattering objects because it does not adequately account for the scattering component of the neutron beam intensity exiting the sample.
We proposed a new method of computed tomography which employs an inverse problem analysis of both the transmitted and scattered images generated from a beam passing through an optically thick object.
This inverse problem makes use of a computationally efficient, two-dimensional forward problem based on neutron transport theory that effectively calculates the detector readings around the edges of an object. The forward problem solution uses a Step-Characteristic (SC) code with known uncollided source per cell, zero boundary flux condition and Sn discretization for the angular dependence. The calculation of the uncollided sources is performed by using an accurate discretization scheme given properties and position of the incoming beam and beam collimator. The detector predictions are obtained considering both the collided and uncollided components of the incoming radiation.
The inverse problem is referred as an optimization problem. The function to be minimized, called an objective function, is calculated as the normalized-squared error between predicted and measured data. The predicted data are calculated by assuming a uniform distribution for the optical properties of the object. The objective function depends directly on the optical properties of the object; therefore, by minimizing it, the correct property distribution can be found. The minimization of this multidimensional function is performed with the Polack Ribiere conjugate-gradient technique that makes use of the gradient of the function with respect to the cross sections of the internal cells of the domain.
The forward and inverse models have been successfully tested against numerical results obtained with MCNP (Monte Carlo Neutral Particles) showing excellent agreements.
The reconstructions of several objects were successful. In the case of a single intrusion, TNTs (Tomography Neutron Transport using Scattering) was always able to detect the intrusion. In the case of the double body object, TNTs was able to reconstruct partially the optical distribution. The most important defect, in terms of gradient, was correctly located and reconstructed. Difficulties were discovered in the location and reconstruction of the second defect.
Nevertheless, the results are exceptional considering they were obtained by lightening the object from only one side. The use of multiple beams around the object will significantly improve the capability of TNTs since it increases the number of constraints for the minimization problem.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/2791 |
Date | 01 November 2005 |
Creators | Scipolo, Vittorio |
Contributors | Adams, Marvin, Charlton, William |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | 1235573 bytes, electronic, application/pdf, born digital |
Page generated in 0.0021 seconds