Return to search

Forecasting in Database Systems

Time series forecasting is a fundamental prerequisite for decision-making processes and crucial in a number of domains such as production planning and energy load balancing. In the past, forecasting was often performed by statistical experts in dedicated software environments outside of current database systems. However, forecasts are increasingly required by non-expert users or have to be computed fully automatically without any human intervention. Furthermore, we can observe an ever increasing data volume and the need for accurate and timely forecasts over large multi-dimensional data sets. As most data subject to analysis is stored in database management systems, a rising trend addresses the integration of forecasting inside a DBMS. Yet, many existing approaches follow a black-box style and try to keep changes to the database system as minimal as possible. While such approaches are more general and easier to realize, they miss significant opportunities for improved performance and usability.

In this thesis, we introduce a novel approach that seamlessly integrates time series forecasting into a traditional database management system. In contrast to flash-back queries that allow a view on the data in the past, we have developed a Flash-Forward Database System (F2DB) that provides a view on the data in the future. It supports a new query type - a forecast query - that enables forecasting of time series data and is automatically and transparently processed by the core engine of an existing DBMS. We discuss necessary extensions to the parser, optimizer, and executor of a traditional DBMS. We furthermore introduce various optimization techniques for three different types of forecast queries: ad-hoc queries, recurring queries, and continuous queries. First, we ease the expensive model creation step of ad-hoc forecast queries by reducing the amount of processed data with traditional sampling techniques. Second, we decrease the runtime of recurring forecast queries by materializing models in a specialized index structure. However, a large number of time series as well as high model creation and maintenance costs require a careful selection of such models. Therefore, we propose a model configuration advisor that determines a set of forecast models for a given query workload and multi-dimensional data set. Finally, we extend forecast queries with continuous aspects allowing an application to register a query once at our system. As new time series values arrive, we send notifications to the application based on predefined time and accuracy constraints. All of our optimization approaches intend to increase the efficiency of forecast queries while ensuring high forecast accuracy.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:27500
Date18 December 2013
CreatorsFischer, Ulrike
ContributorsLehner, Wolfgang, Härder, Theo, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.006 seconds