Return to search

Characterization of train-induced aerodynamic loads on high-speed railway vertical noise barriers

High-Speed Railway (HSR) technology requires the deployment of noise barriers to mitigate noise pollution affecting nearby residents. As train speeds increase, so does the magnitude of aerodynamic effects such as aerodynamic noise and the pressure on these barriers, meaning that these structures require robust sound insulation and structural load-bearing capacities. Train-induced aerodynamic loads must therefore be accounted for in the structural design of HSR noise barriers, and accurate characterization of these loads is vital for ensuring noise barrier performance and safety. Current European standards primarily evaluate aerodynamic loads on noise barriers based on train speed and the distance to the track centre. However, geometric differences between high-speed trains (HSTs) from different countries and regions necessitate the validation and potential revision of existing load calculation models. This thesis aims to enhance the characterization of train-induced aerodynamic pressure on HSR noise barriers and develop more accurate models for its calculation, focusing on the most common barrier type—vertical noise barriers. Initially, a thorough literature review was conducted to assimilate current knowledge on this topic and pinpoint existing gaps and challenges. Multiple factors including the geometric properties of trains and the heights of noise barriers were then analysed using computational fluid dynamics (CFD) simulations to evaluate their impact on the train-induced aerodynamic pressure on vertical noise barriers. Finally, the suitability of existing pressure calculation models was evaluated using literature data and a modified calculation model building on the EN 14067-4 model was developed.  A key finding is that the general applicability of existing pressure calculation models is limited because of the wide variation in HST geometries and noise barrier heights. The amplitude of train-induced aerodynamic pressure on vertical noise barriers increases with train height and width but decreases as nose length increases. While taller noise barriers experience greater aerodynamic pressures, the in-crease in pressure with barrier height is not significant. The proposed modified pressure calculation model that accounts for train geometry and the height distribution coefficient predicts the train-induced aerodynamic pressure on vertical noise barriers more accurately than existing models and could thus improve the structural design and safety of HSR noise barriers across a wide range of conditions.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-101574
Date January 2023
CreatorsLiu, Dongyun
PublisherLuleå tekniska universitet, Byggkonstruktion och brand, Luleå
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLicentiate thesis / Luleå University of Technology, 1402-1757

Page generated in 0.0024 seconds