Return to search

On unsupervised learning in high dimension / Sur l'apprentissage non supervisé en haute dimension

Dans ce mémoire de thèse, nous abordons deux thèmes, le clustering en haute dimension d'une part et l'estimation de densités de mélange d'autre part. Le premier chapitre est une introduction au clustering. Nous y présentons différentes méthodes répandues et nous nous concentrons sur un des principaux modèles de notre travail qui est le mélange de Gaussiennes. Nous abordons aussi les problèmes inhérents à l'estimation en haute dimension et la difficulté d'estimer le nombre de clusters. Nous exposons brièvement ici les notions abordées dans ce manuscrit. Considérons une loi mélange de K Gaussiennes dans R^p. Une des approches courantes pour estimer les paramètres du mélange est d'utiliser l'estimateur du maximum de vraisemblance. Ce problème n'étant pas convexe, on ne peut garantir la convergence des méthodes classiques. Cependant, en exploitant la biconvexité de la log-vraisemblance négative, on peut utiliser la procédure itérative 'Expectation-Maximization' (EM). Malheureusement, cette méthode n'est pas bien adaptée pour relever les défis posés par la grande dimension. Par ailleurs, cette méthode requiert de connaître le nombre de clusters. Le Chapitre 2 présente trois méthodes que nous avons développées pour tenter de résoudre les problèmes décrits précédemment. Les travaux qui y sont exposés n'ont pas fait l'objet de recherches approfondies pour diverses raisons. La première méthode, 'lasso graphique sur des mélanges de Gaussiennes', consiste à estimer les matrices inverses des matrices de covariance dans l'hypothèse où celles-ci sont parcimonieuses. Nous adaptons la méthode du lasso graphique de [Friedman et al., 2007] sur une composante dans le cas d'un mélange et nous évaluons expérimentalement cette méthode. Les deux autres méthodes abordent le problème d'estimation du nombre de clusters dans le mélange. La première est une estimation pénalisée de la matrice des probabilités postérieures dont la composante (i,j) est la probabilité que la i-ème observation soit dans le j-ème cluster. Malheureusement, cette méthode s'est avérée trop coûteuse en complexité. Enfin, la deuxième méthode considérée consiste à pénaliser le vecteur de poids afin de le rendre parcimonieux. Cette méthode montre des résultats prometteurs. Dans le Chapitre 3, nous étudions l'estimateur du maximum de vraisemblance d'une densité de n observations i.i.d. sous l’hypothèse qu'elle est bien approximée par un mélange de plusieurs densités données. Nous nous intéressons aux performances de l'estimateur par rapport à la perte de Kullback-Leibler. Nous établissons des bornes de risque sous la forme d'inégalités d'oracle exactes, que ce soit en probabilité ou en espérance. Nous démontrons à travers ces bornes que, dans le cas du problème d’agrégation convexe, l'estimateur du maximum de vraisemblance atteint la vitesse (log K)/n)^{1/2}, qui est optimale à un terme logarithmique près, lorsque le nombre de composant est plus grand que n^{1/2}. Plus important, sous l’hypothèse supplémentaire que la matrice de Gram des composantes du dictionnaire satisfait la condition de compatibilité, les inégalités d'oracles obtenues donnent la vitesse optimale dans le scénario parcimonieux. En d'autres termes, si le vecteur de poids est (presque) D-parcimonieux, nous obtenons une vitesse (Dlog K)/n. En complément de ces inégalités d'oracle, nous introduisons la notion d’agrégation (presque)-D-parcimonieuse et établissons pour ce type d’agrégation les bornes inférieures correspondantes. Enfin, dans le Chapitre 4, nous proposons un algorithme qui réalise l'agrégation en Kullback-Leibler de composantes d'un dictionnaire telle qu'étudiée dans le Chapitre 3. Nous comparons sa performance avec différentes méthodes. Nous proposons ensuite une méthode pour construire le dictionnaire de densités et l’étudions de manière numérique. Cette thèse a été effectué dans le cadre d’une convention CIFRE avec l’entreprise ARTEFACT. / In this thesis, we discuss two topics, high-dimensional clustering on the one hand and estimation of mixing densities on the other. The first chapter is an introduction to clustering. We present various popular methods and we focus on one of the main models of our work which is the mixture of Gaussians. We also discuss the problems with high-dimensional estimation (Section 1.3) and the difficulty of estimating the number of clusters (Section 1.1.4). In what follows, we present briefly the concepts discussed in this manuscript. Consider a mixture of $K$ Gaussians in $RR^p$. One of the common approaches to estimate the parameters is to use the maximum likelihood estimator. Since this problem is not convex, we can not guarantee the convergence of classical methods such as gradient descent or Newton's algorithm. However, by exploiting the biconvexity of the negative log-likelihood, the iterative 'Expectation-Maximization' (EM) procedure described in Section 1.2.1 can be used. Unfortunately, this method is not well suited to meet the challenges posed by the high dimension. In addition, it is necessary to know the number of clusters in order to use it. Chapter 2 presents three methods that we have developed to try to solve the problems described above. The works presented there have not been thoroughly researched for various reasons. The first method that could be called 'graphical lasso on Gaussian mixtures' consists in estimating the inverse matrices of covariance matrices $Sigma$ (Section 2.1) in the hypothesis that they are parsimonious. We adapt the graphic lasso method of [Friedman et al., 2007] to a component in the case of a mixture and experimentally evaluate this method. The other two methods address the problem of estimating the number of clusters in the mixture. The first is a penalized estimate of the matrix of posterior probabilities $ Tau in RR ^ {n times K} $ whose component $ (i, j) $ is the probability that the $i$-th observation is in the $j$-th cluster. Unfortunately, this method proved to be too expensive in complexity (Section 2.2.1). Finally, the second method considered is to penalize the weight vector $ pi $ in order to make it parsimonious. This method shows promising results (Section 2.2.2). In Chapter 3, we study the maximum likelihood estimator of density of $n$ i.i.d observations, under the assumption that it is well approximated by a mixture with a large number of components. The main focus is on statistical properties with respect to the Kullback-Leibler loss. We establish risk bounds taking the form of sharp oracle inequalities both in deviation and in expectation. A simple consequence of these bounds is that the maximum likelihood estimator attains the optimal rate $((log K)/n)^{1/2}$, up to a possible logarithmic correction, in the problem of convex aggregation when the number $K$ of components is larger than $n^{1/2}$. More importantly, under the additional assumption that the Gram matrix of the components satisfies the compatibility condition, the obtained oracle inequalities yield the optimal rate in the sparsity scenario. That is, if the weight vector is (nearly) $D$-sparse, we get the rate $(Dlog K)/n$. As a natural complement to our oracle inequalities, we introduce the notion of nearly-$D$-sparse aggregation and establish matching lower bounds for this type of aggregation. Finally, in Chapter 4, we propose an algorithm that performs the Kullback-Leibler aggregation of components of a dictionary as discussed in Chapter 3. We compare its performance with different methods: the kernel density estimator , the 'Adaptive Danzig' estimator, the SPADES and EM estimator with the BIC criterion. We then propose a method to build the dictionary of densities and study it numerically. This thesis was carried out within the framework of a CIFRE agreement with the company ARTEFACT.

Identiferoai:union.ndltd.org:theses.fr/2017SACLG003
Date12 December 2017
CreatorsSebbar, Mehdi
ContributorsUniversité Paris-Saclay (ComUE), Dalalyan, Arnak S.
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds