This thesis characterizes parylene-C films with respect to biological micro-electro-mechanical system (BioMEMS) applications. BioMEMS devices have fueled the growth and research in the area of detecting, analyzing and identifying pathogens rapidly with precision in the bio-medical applications, thereby positively impacting millions of lives and made it extremely popular among researchers. These devices are fabricated using state-of-the-art techniques usually involving more than one material which typically has different biocompatibility and is not acceptable for various BioMEMS and biomedical applications; therefore, a special biocompatible coating is required. The parylene polymer is an example of such a coating as it is known for its biocompatibility (U.S. Pharmacopoeia (USP) Class VI) as well as possessing pinhole free surfaces with low penetrability which provide exceptional barriers to moistures and solvents. The vapor deposition process utilized for depositing parylene coating also provide conformable, uniform thickness throughout targeted sample even with high aspect ratio microstructures, and is compatible with both polymeric (e.g. PMMA, polycarbonate, etc.) and non-polymeric (e.g. nickel, silicon, etc.) substrates, as the samples are kept inside a room temperature (25° C) chamber where the final deposition step occurs. In this study, parylene coatings were characterized with respect to surface roughness, where roughness measurements show no significantly changes when parylene are deposited on smoother pristine PMMA (from ~Ra=2.66nm to ~Ra=2.85nm) and polycarbonate (from ~Ra=3.02nm to ~Ra=5.92nm) and reduces roughness of rougher surfaces (electroplated nickel from ~Ra=374nm to ~Ra=201nm). Parylene is also characterize with respect to surface energy by measuring contact angles, where pristine parylene surface (contact angle = ~89°) becomes more hydrophilic by treating it with oxygen plasma (contact angle = ~32°). Surface modification was used to control the number of live cells (HeLa) attaching on parylene, where O2 plasma was used to increase this by 2-folds and altering substrate roughness helped in minimizing the cells adhesion to parylene.
Identifer | oai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-11102011-105511 |
Date | 14 November 2011 |
Creators | Nguyen, Quoc Phuc |
Contributors | Goettert, Jost S, Singh, Varshni, Monroe, William Todd |
Publisher | LSU |
Source Sets | Louisiana State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lsu.edu/docs/available/etd-11102011-105511/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0012 seconds