Return to search

Run-around membrane energy exchanger performance and operational control strategies

A run-around membrane energy exchanger (RAMEE) is a novel energy exchanger that is capable of transferring both heat and moisture, which can significantly reduce the energy required to condition outdoor ventilation air. The RAMEE uses a liquid desiccant to transfer both heat and moisture between two remote air streams, making it appropriate for many applications, including building HVAC retro-fits. Both initial system start-up and changing outdoor conditions require time for the desiccant to undergo changes in both temperature and concentration, and can cause significant transient delays in system performance. Under some conditions, these transients may be beneficial by increasing the system performance. However under some conditions, the transient delays can cause a substantial decrease in performance.<p>
This thesis focuses on the development of control strategies that can be used to reduce unwanted transient delays. In order to develop these control strategies, the performance of a RAMEE is first investigated using both experimental and numerical methods. The transient numerical and experimental effectiveness results show satisfactory agreement, with a maximum root mean squared error of 10%. Both the numerical and experimental data show that a long transient time of several hours, or even several days, can occur upon initial system start-up.<p>
The numerical model is used to investigate several control strategies to reduce unwanted transient delays. The control strategies investigated are: solution and air flow control, air flow bypass, solution temperature control, and solution concentration control. The solution and air flow control are shown to reduced the start-up transient time by up to 11%, but require either a reduction in air flow or an increase in solution pumping costs. Air flow bypass proves to be a better option which provides a 16% reduction in transient time, and only requires that a bypass damper be provided for each exchanger. Solution temperature control is capable of essentially eliminating the thermal transient time (time required for the solution to reach operating temperature), but the thermal transient time is found to be a minor contributor to the overall transient time (time required for the solution to reach operating temperature and concentration) when the initial concentration of the solution is different than the steady-state concentration. When thermal and moisture transients exist, total transient times may be over 18 days. A practical temperature and concentration control strategy is developed, which can reduce transient delays by over 90% and increase performance during variable outdoor weather conditions.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-12192009-145431
Date18 January 2010
CreatorsErb, Blake
ContributorsSimonson, Carey, Besant, Bob, Torvi, David, Nguyen, Na, Schoenau, Greg
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-12192009-145431/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0028 seconds