Return to search

Swept and unswept separation bubbles

The effect of sweep on separation bubbles as occurring in the subsonic flows past thin flat plates with rectangular leading edges has been studied experimentally. The distance between separation and reattachment, at high Reynolds number, was about 5.5 times the plate thickness in the flow region undisturbed by end effects. This distance was independent of sweepback for sweep angles up to and including 45<SUP>o</SUP>. The chordwise distribution of a static-pressure coefficient and a coefficient of the intensity of the static-pressure fluctuations, both measured on the surface of the plate and based upon the free-stream velocity component normal to the leading edge, were independent of the sweep angle up to and including 30<SUP>o</SUP> to a first approximation. The spectra of the static-pressure fluctuations, however, displayed some qualitative changes with increasing sweep angle. The distribution of a coefficient of the chordwise skin-friction component, based upon the free-stream velocity component normal to the leading edge, was independent of sweep up to and including 30<SUP>o</SUP> to a crude first approximation. The chordwise velocity profiles non-dimensionalised by the local external chordwise velocity component, were independent of sweep up to and including 45<SUP>o</SUP> in the separation bubble but downstream of reattachment small but persistent changes occurred with increasing sweep angle. Smoke-flow visualisations in the swept and the unswept flow at low Reynolds number displayed the presence of typical vortex loops in the reattachment region, many of which broke up and were partially entrained into the separation bubble.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:234134
Date January 1987
CreatorsBarkey Wolf, Frederik Dirk
PublisherUniversity of Cambridge
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.repository.cam.ac.uk/handle/1810/250906

Page generated in 0.0025 seconds