Return to search

An unsteady multiphase approach to in-flight icing /

Ice accretion is a purely unsteady phenomenon that is presently approximated by most icing codes using quasi-steady modeling. The accuracy of ice prediction is thus directly related to the arbitrarily prescribed time span during which the impact of ice growth on both flow and droplets is neglected. The objective of this work is to remove this limitation by implementing a cost-effective unsteady approach. This is done by fully coupling, in time, a diphasic flow (interacting air and droplet particles) with the ice accretion model. The two-phase flow is solved using the Navier-Stokes and Eulerian droplet equations with dual-time stepping in order to improve computational time. The ice shape is either obtained from the conservation of mass and energy within a thin film layer for glaze and mixed icing conditions, or from a mass balance between water droplets impingement and mass flux of ice for rime icing conditions. The iced surface being constantly displaced in time, Arbitrary Lagrangian-Eulerian terms are added to the governing equations to account for mesh movement. Moreover, surface smoothing techniques are developed to prevent degradation of the iced-surface geometric discretization. For rime ice, the numerical results clearly show that the new full unsteady modeling improves the accuracy of ice prediction, compared to the quasi-steady approach, while in addition ensuring time span independence. The applicability of the unsteady icing model for predicting glaze ice accretion is also demonstrated by coupling the diphasic model to the Shallow Water Icing Model. A more rigorous analysis reveals that this model requires the implementation of local surface roughness and that previous quasi-steady validations cannot be carried out using a small number of shots, therefore the need for unsteady simulation.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.112552
Date January 2008
CreatorsAliaga Rivera, Cristhian Neil.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Mechanical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002762582, proquestno: AAIMR51442, Theses scanned by UMI/ProQuest.

Page generated in 0.0023 seconds