Return to search

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles / Хардверска акцелерација неинкременталних алгоритама за формирање стабала одлуке и њихових ансамбала / Hardverska akceleracija neinkrementalnih algoritama za formiranje stabala odluke i njihovih ansambala

<p>The thesis proposes novel full decision tree and decision tree ensemble<br />induction algorithms EFTI and EEFTI, and various possibilities for their<br />implementations are explored. The experiments show that the proposed EFTI<br />algorithm is able to infer much smaller DTs on average, without the<br />significant loss in accuracy, when compared to the top-down incremental DT<br />inducers. On the other hand, when compared to other full tree induction<br />algorithms, it was able to produce more accurate DTs, with similar sizes, in<br />shorter times. Also, the hardware architectures for acceleration of these<br />algorithms (EFTIP and EEFTIP) are proposed and it is shown in experiments<br />that they can offer substantial speedups.</p> / <p>У овоj дисертациjи, представљени су нови алгоритми EFTI и EEFTI за<br />формирање стабала одлуке и њихових ансамбала неинкременталном<br />методом, као и разне могућности за њихову имплементациjу.<br />Експерименти показуjу да jе предложени EFTI алгоритам у могућности<br />да произведе драстично мања стабла без губитка тачности у односу на<br />постојеће top-down инкременталне алгоритме, а стабла знатно веће<br />тачности у односу на постојеће неинкременталне алгоритме. Такође су<br />предложене хардверске архитектуре за акцелерацију ових алгоритама<br />(EFTIP и EEFTIP) и показано је да је уз помоћ ових архитектура могуће<br />остварити знатна убрзања.</p> / <p>U ovoj disertaciji, predstavljeni su novi algoritmi EFTI i EEFTI za<br />formiranje stabala odluke i njihovih ansambala neinkrementalnom<br />metodom, kao i razne mogućnosti za njihovu implementaciju.<br />Eksperimenti pokazuju da je predloženi EFTI algoritam u mogućnosti<br />da proizvede drastično manja stabla bez gubitka tačnosti u odnosu na<br />postojeće top-down inkrementalne algoritme, a stabla znatno veće<br />tačnosti u odnosu na postojeće neinkrementalne algoritme. Takođe su<br />predložene hardverske arhitekture za akceleraciju ovih algoritama<br />(EFTIP i EEFTIP) i pokazano je da je uz pomoć ovih arhitektura moguće<br />ostvariti znatna ubrzanja.</p>

Identiferoai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)102520
Date22 February 2017
CreatorsVukobratović Bogdan
ContributorsStruharik Rastislav, Dautović Staniša, Vranjković Vuk, Mezei Ivan, Tokić Teufik
PublisherUniverzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, University of Novi Sad, Faculty of Technical Sciences at Novi Sad
Source SetsUniversity of Novi Sad
LanguageEnglish
Detected LanguageUnknown
TypePhD thesis

Page generated in 0.0019 seconds