Return to search

Integrin Signaling in Cell Adhesion and Mechanotransduction : Regulation of PI3K, AKT, and ROS

Integrins are a family of conserved cell surface receptors found throughout the animal kingdom. They comprise 24 dimers in mammals, and regulate a number of processes including cell survival, differentiation, and migration. These complex cellular responses involve processes such as cell attachment, spreading, and various signaling pathways, which in turn depend on the composition of the extracellular environment, on its mechanical properties, and involved integrin types. This thesis focuses on identifying molecules that signal downstream of integrins and how integrin-induced signals may differ dependent on the type of mechanical stimulus that is given. In Paper I, we show that cell spreading and the activation of AKT is regulated by the catalytic PI3K isoform p110α. An intact β1 integrin cytoplasmic tail and actin polymerization was needed for spreading, whereas the presence of FAK or SRC, or the interaction between p110α and RAS was dispensable. Paper II reports that the RICTOR-mTOR complex (TORC2) acts as the kinase downstream of β1 integrins in order to phosphorylate AKT on Ser473, which was functionally linked to cell survival. β1 integrins activated both AKT1 and AKT2, but seemed to prefer AKT2. The investigation of several receptor types with regard to their requirement of TORC2, PAK, and ILK for AKT Ser473 phosphorylation revealed that different kinds of receptors engage specific enzyme combinations depending on cell type and context. In the third paper, we demonstrate that adhesion- and mechanical stretch-induced integrin signaling lead to divergent protein phosphorylation patterns, and that most signals from cell adhesion were not dependent on intracellular contractility. This indicates that integrin ligand binding and mechanical stretch induce signaling via distinct mechanisms. Reactive oxygen species (ROS) derived from different cellular sources modulated these responses. Stretching primarily induced phosphorylation of ERK1/2, and this signal was markedly increased by a derivative of the antioxidant ascorbate and extracellularly administered catalase. The robust AKT phosphorylation in response to adhesion was almost completely abolished with an inhibitor targeting mitochondrial ROS, whereas phosphorylation levels were only marginally affected in stretch assays. Similar results were obtained with siRNA knock-down of a critical subunit of ROS-producing NADPH oxidases.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-170267
Date January 2012
CreatorsZeller, Kathrin Stephanie
PublisherUppsala universitet, Institutionen för medicinsk biokemi och mikrobiologi, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 750

Page generated in 0.0021 seconds