Cette étude propose une application innovante de deux concepts très étudiés par la communauté mathématique, le fibré des k-repères et la connexion de Cartan. D'une part, l'utilisation d'une connexion de Cartan particulière sur le fibré des 2-repères nous permet de proposer une généralisation de la notion de dérivée de Schwarz en dimension arbitraire, pour les difféomorphismes projectifs et conformes. D'autre part, nous avons pu élaborer une structure de BRS permettant de reproduire infinitésimalement l'action des difféomorphismes sur des champs de jauge à un terme de courbure près. Ainsi, la notion de connexion de Cartan sur le fibré des 2-repères a permis de résoudre un problème ouvert, originellement formulé par A.M. Polyakov en 1990 qui obtient formellement l'action de difféomorphismes (symétrie de l'espace-temps) à partir d'une transformation de jauge (symétrie interne). Les symétries d'espace-temps et les symétries internes peuvent ainsi être exprimées dans un formalisme similaire.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00409501 |
Date | 23 July 2009 |
Creators | Tidei, Carina |
Publisher | Université de la Méditerranée - Aix-Marseille II |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds