Para lidar com a natureza exploratória da ciência e o processo dinâmico envolvido nas análises científicas, os sistemas de gerência de workflows dinâmicos são essenciais. Entretanto, workflows dinâmicos são considerados como um desafio em aberto, devido à complexidade em gerenciar o workflow em contínua adaptação, em tempo de execução, por eventos externos como a intervenção humana. Apoiar iterações dinâmicas é um passo importante na direção dos workflows dinâmicos uma vez que a interação entre o usuário e o workflow é iterativa. Porém, o apoio existente para iterações em workflows científicos é estático e não permite mudanças, em tempo de execução, nos dados do workflow, como critérios de filtros e margens de erro. Nesta tese, propomos uma abordagem algébrica para dar apoio a iterações centradas em dados em workflows dinâmicos. Propomos o conceito de linhagem da iteração de forma que a gerência dos dados de proveniência seja consistente com as interações com o workflow. A linhagem também possibilita que os cientistas interajam com os dados do workflow por meio de dois algoritmos implementados no sistema de workflows Chiron. Avaliamos a nossa abordagem utilizando workflows reais em ambientes de execução em larga escala. Os resultados mostram melhorias no tempo de execução de até 24 dias quando comparado com uma abordagem tradicional não iterativa. Realizamos consultas complexas aos resultados parciais ao longo das iterações do workflow. A nossa abordagem introduz uma sobrecarga de no máximo 3,63% do tempo de execução. O tempo para executar os algoritmos de interação também é menor que 1 milissegundo no pior cenário avaliado.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00939266 |
Date | 18 December 2013 |
Creators | Dias, Jonas |
Source Sets | CCSD theses-EN-ligne, France |
Language | Portuguese |
Detected Language | Portuguese |
Type | PhD thesis |
Page generated in 0.0021 seconds