This paper continues our study of applications of factorized Gröbner basis computations in [8] and [9]. We describe a way to interweave factorized Gröbner bases and the ideas in [5] that
leads to a significant speed up in the computation of isolated primes for well splitting examples. Based on that observation we generalize the algorithm presented in [22] to the computation of primary decompositions for modules. It rests on an ideal separation argument. We also discuss the practically important question how to extract a minimal primary decomposition, neither addressed in [5] nor in [17]. For that purpose we outline a method to detect necessary embedded primes in the output collection of our algorithm, similar to [22, cor. 2.22]. The algorithms are partly implemented in version 2.2.1 of our REDUCE package CALI [7].
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:32790 |
Date | 25 January 2019 |
Creators | Gräbe, Hans-Gert |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 0938-1279, 1432-0622 |
Page generated in 0.0023 seconds