FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Seja ℓ > 3 um primo Ãmpar. Sejam So, S+, S_ conjuntos finitos mutuamente disjuntos de primos racionais. Para qualquer nÃmero real suficientemente grande X > 0, baseando-nos
em [16], damos neste trabalho, um limite inferior do nÃmero de corpos quadrÃticos imaginÃrios k que satisfazem as seguintes condiÃÃes: o discriminante de k à maior que
-X o nÃmero de classe de k à nÃo divisÃvel por ℓ, todo q â So se ramifica, todo q â S+ se decompÃe e todo q â S_ à inerte em k, respectivamente. / Let ℓ > 3 be an odd prime. Let So, S+, S_ be mutually disjoint finite sets of rational primes. For any suficiently large real number X > 0, basing ourselves on [16], we give this paper a lower bound of the number of imaginary quadratic fields k which satisfy the following conditions: the discriminant of k is greater than -X, the class number ok is not divisible by ℓ, every q â So ramifies, every q â S+ splits and every q â S_ is
inert in k, respectively.
Identifer | oai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:4122 |
Date | 29 July 2010 |
Creators | Alexsandro BelÃm da Silva |
Contributors | Jose Othon Dantas Lopes, Trajano Pires da NÃbrega Neto, Angelo Papa Neto |
Publisher | Universidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em MatemÃtica, UFC, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds