Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / No presente trabalho desenvolvemos e aplicamos a teoria de homologia mÃtrica, criada por Jean Paul Brasselet e Lev Birbrair. A cada conjunto semialgÃbrico X associamos uma coleÃÃo de espaÃos vetoriais reais (ou grupos abelianos) {MH_k^ν(X)} _{k є Z} de forma que se à dado um outro semialgÃbrico X' que à semialgebricamente bi-Lipschitz equivalente a X, entÃo MH_k^ν(X) à isomorfo a MH_k^ν(X') para todo k. Assim, a coleÃÃo {MH_k^ν(X)} carrega alguma informaÃÃo mÃtrica do semialgÃbrico X. Em particular, teremos condiÃÃes necessÃrias para que uma singularidade isolada x_0 pertencente a X seja cÃnica. Mais precisamente, dada uma subvariedade compacta L de uma esfera S_{x_0,r}, calculamos os grupos MH_k^ν(x_0*L) em termos da homologia singular de L, onde x_0*L denota o cone {tx_0+(1-t)x ; x pertencente a L, t pertencente a [0,1]}. Aliado à homologia mÃtrica temos os Ciclos de Chegger, objetos geomÃtricos que obstruem a natureza cÃnica de uma singularidade. Como uma aplicaÃÃo da teoria, apresentamos uma classe de superfÃcies complexas cujas singularidades (isoladas) sÃo nÃo-cÃnicas.
Identifer | oai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:682 |
Date | 16 March 2007 |
Creators | Tiago CaÃla Ribeiro |
Contributors | Alexandre Cesar Gurgel Fernandes, Lev Birbrair, Maria Aparecida Soares Ruas |
Publisher | Universidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em MatemÃtica, UFC, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds