Return to search

Multiscale Engineering Response of Alkali Activated Aluminosilicate Binders

abstract: Sustainable materials and methods have achieved a pivotal role in the research plethora of the new age due to global warming. Cement production is responsible in contributing to 5% of global CO2 emissions. Complete replacement of cement by alkaline activation of aluminosilicate waste materials such as slag and fly ash is a major advancement towards reducing the adverse impacts of cement production. Comprehensive research has been done, to understand the optimized composition and hydration products. The focus of this dissertation is to understand the multiscale behavior ranging from early age properties, fundamental material structure, fracture and crack resistance properties, durability responses and alternative activation methods to existing process.

The utilization of these materials has relied primarily on the dual benefits of reduced presence in landfills and cost. These have also proven to yield a higher service life as opposed to conventional ordinary portland cement (OPC) concrete due to an enhanced microstructure. The use of such materials however has not been readily acceptable due to detrimental early age behavior. The influence of design factors is studied to understand the reaction mechanism. Silicon polymerization at the molecular level is studied to understand the aluminosilicate interactions which are responsible for prevention of any leaching of ions. A comparative study between fly ash and slag binders is carried out to evaluate the stable states of sodium, aluminum and silicon in both these binders, since the likelihood of the sodium ions leaching out is high.

Compressive and flexural strength have been reported in previous literature, but the impact of crack resistance was unevaluated from an approach of characterizing the fracture process zone. Alternative routes of activation are explored with an intent to reduce the high alkalinity by use of neutral salts such as sodium sulfate. High volume OPC replacement by both class C and F fly ash is performed to evaluate the differences in hydration phase formation responsible for its pore refinement and strength. Spectroscopic studies have also allowed to study the fundamental material structure. Durability studies are also performed on these samples to understand the probability external sulfate attacks as opposed to OPC mixes. / Dissertation/Thesis / Doctoral Dissertation Engineering 2016

Identiferoai:union.ndltd.org:asu.edu/item:41278
Date January 2016
ContributorsDakhane, Akash (Author), Neithalath, Narayanan (Advisor), Rajan, Subramaniam (Committee member), Mobasher, Barzin (Committee member), Marzke, Robert (Committee member), Das, Sumanta (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format285 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0022 seconds