Return to search

APPLICATION OF CELLULOSE BASED NANOMATERIALS IN 3D-PRINTED CEMENTITIOUS COMPOSITES

With the rapid development of concrete 3D printing for construction projects, it is crucial to produce sustainable 3D-printed cementitious composites that meet the required fresh and hardened properties. This study investigates the application of cellulose-based nanomaterials (CN) (i.e., abundant natural polymers) that can improve the mechanical properties of cement-based materials – in 3D-printed cementitious composites of ordinary portland cement (OPC) and alkali-activated materials (AAMs). A combination of low calcium fly ash and ground granulated blast-furnace slag was used as the precursor in AAM systems. This work examines the 3D-printed mixtures with varying binders and mixture proportions and with different dosages of cellulose-based nanomaterial known as cellulose nanocrystals (CNC) to optimize the formulation for the production of sustainable high-performance 3D-printed elements. A suite of experimental techniques was applied to study the impact of CNC on the fresh and hardened properties of the 3D-printed samples. The buildability of the alkali-activated mixtures was improved by increasing the CNC content, suggesting that the CNC performs as a viscosity-modifying agent in AAMs. The inclusion of CNCs up to 1.00% (by volume of the binder) improves the overall mechanical performance and reduces the porosity of 3D-printed OPC and heat-cured AAM samples. Further, the addition of CNC (up to 0.30%) in sealed-cured AAM samples improves their flexural strength due to the crack-bridging mechanism of CNCs. The addition of CNC densifies the microstructure of OPC samples by increasing the degree of hydration, however, no significant impact on the microstructure of AAMs is noticed. The OPC sample with CNC has approximately 25% increase in the degree of hydration at inner depths which can be attributed to the internal curing potential of CNC materials. The initial water absorption rate of heat-cured AAM samples is lower than the sealed-cured AAM samples and comparable to the OPC system. The developed printable “alkali-activated-CNC” composites can provide an overall reduction in the environmental impacts of the 3D-printed cementitious composites by eliminating/reducing the need for different chemical admixtures to improve 3D-printed material consistency and stability, and replacing 100% of portland cement with fly ash and slag. / Civil Engineering

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/9505
Date12 1900
CreatorsFahim, Abdullah Al, 0009-0005-7301-4256
ContributorsKhanzadeh, Mehdi, Coe, Joseph T., Zhu, Yichuan
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format56 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/9467, Theses and Dissertations

Page generated in 0.0022 seconds