3 Abstract Yeast Saccharomyces cerevisiae belongs to important models for alkali-metal-cation homeostasis research. As other cells, certain intracellular content of K+ is necessary for S. cerevisiae, but Na+ or other alkali metal cations (Li+ , Rb+ ) are toxic for yeast cells. Uniporters Trk1 and Trk2 are responsible for K+ accumulation, while efflux of Na+ , Li+ , Rb+ and K+ is ensured by Ena ATPases, Na+ (K+ )/H+ antiporter Nha1 and K+ specific channel Tok1. Several regulators of K+ (Na+ ) transporters are already known, but reciprocal regulation between transporters and overall picture of the maintenance of alkali-metal-cation homeostasis is still unclear. In this work, K+ circulation (simultaneous uptake and export of K+ ) was shown to be important in alkali-metal-cation homeostasis maintenance. K+ circulation is maintained using reciprocal regulation and interactions between K+ exporters and importers. Though obtained results showed that the alkali-metal-cation homeostasis and associated physiological parameters (e.g. membrane potential, cell size, salt sensitivity) are strain specific, Nha1p was verified to be important for cell survival in ever-changing natural environment. Furthermore, two novel positive regulators of Nha1p activity were found, 14-3-3 proteins and Cka1 kinase. 14-3-3 proteins...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:327179 |
Date | January 2013 |
Creators | Zahrádka, Jaromír |
Contributors | Sychrová, Hana, Obšilová, Veronika, Pichová, Iva |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds