Les premières observations de l'émission d'électrons Auger au cours du bombardement ionique d'une cible solide remontent à 1965 (Snoek et al. 11) dans le cas d'électrons caractéristiques des particules projectiles, et à 1967 (Hennequin et al. 12) dans le cas d'électrons caractéristiques des atomes cibles. Il existe actuellement une soixantaine de publications sur le sujet, mais les publications étrangères n'apparaissent qu'à partir de 1974, certains auteurs semblant même avoir incidenment redécouvert le phénomène. L'émission Auger lors de collisions en phase gazeuse a fait aussi l'objet de nombreuses études durant la même période. La connaissance précise des conditions mécaniques de la collision et l'existence d'états électroniques bien définis, tant avant qu'après la désexcitation par effet Auger, facilitent considérablement l'interprétation des expériences. La théorie de Fano et Lichten 1960 est maintenant bien établie : certaines des orbitales moléculaires formées lors de la collision de deux particules sont promues vers des niveaux moins liés et, après interaction avec une orbitale incomplète, peuvent conduire à la formation d'un trou électronique interne dans l'un ou l'autre des partenaires. Plus généralement, ce sont les progrès récents de la physique des collisions qui permettent maintenant de comprendre l'ensemble du mécanisme de l'émission Auger à partir des solides. Il existe naturellement un lien entre -l'émission d'électrons Auger et l'émission d'ions secondaires durant le bombardement ionique d'un solide. Ce lien est même direct dans le cas des ions rapides ou multichargés qui sont formés par désexcitation Auger, à l'extérieur de la cible, d'atomes éjectés ayant conservé un trou électronique interne : c'est le modèle de l'émission cinétique de Joyes 1975. C'est d'ailleurs à la suite d'une suggestion de Castaing, et pour interpréter l'émission d'ions secondaires, que l'étude de ce lien a été entreprise tant sur le plan expérimental que théorique. L'émission Auger permet en outre d'atteindre une meilleure connaissance des collisions les plus violentes à l'intérieur d'un solide, et c'est dans cet esprit que le présent travail a été réalisé. Plus précisément, nous avons cherché à mieux déterminer dans quelle mesure les conclusions théoriques de la physique des collisions peuvent être utilisées pour rendre compte des résultats expérimentaux relatifs à l'émission Auger des solides et prévoir l'influence de la nature de la cible et du projectile sur les caractéristiques de cette émission. D'abord un rappel théorique nécessaire à l'interprétation des résultats expérimentaux, nous suivrons les étapes conduisant à l'émission d'un électron Auger à la suite de l'impact de l'ion primaire sur les atomes de la cible : la création d'une cascade de collisions dans le solide, l'excitation d'un niveau électronique interne au cours d'une collision violente, la désexcitation par effet Auger au cours de la migration de la particule excitée et enfin la sortie de l'électron à l'extérieur de la cible. Puis la description des propriétés des dispositifs expérimentaux que nous avons réalisés pour cette étude. Ensuite, dans les deux chapitres suivants, nous étudierons les collisions responsables de l'émission des électrons Auger caractéristiques soit du projectile, soit de la cible. Dans le premier cas (chapitre III), nous nous intéresserons essentiellement à l'émission des électrons Auger de l'argon lors du bombardement de diverses cibles par des ions Ar d'énergie comprise entre 2 et 16 keV et pourrons montrer ainsi le bon accord entre les expériences sur les solides et les interprétations théoriques fondées sur les collisions atomiques et la promotion des orbitales moléculaires. Une fois établi cet accord, il nous sera possible (chapitre IV) d'étendre cette interprétation à l'émission des électrons Auger caractéristiques de la cible, pour lesquels la situation est compliquée par le fait que l'énergie de collision est mal connue et qu'un doute peut subsister sur la nature de la collision responsable de l'excitation : collision symétrique entre deux atomes identiques de la cible ou collision asymétrique entre l'ion incident et l'un des atomes de la cible. Dans le cas des métaux légers, magnésium et aluminium, nous montrerons que la proportion des collisions asymétriques est une fonction croissante de l'énergie des ions incidents, mais reste faible dans notre domaine d'énergie (2 - 16 keV). Les résultats que nous présentons ont pour la plupart fait l'objet de publications antérieures.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00850947 |
Date | 27 November 1981 |
Creators | Viaris de Lesegno, Patrick |
Publisher | Université Paris-Nord - Paris XIII |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds