Return to search

Modelado, estudio y validación experimental de la influencia de los parámetros internos en el rendimiento de sistemas de almacenamiento de energía basados en baterías. Aplicación al caso del Departamento del Chocó (Colombia)

[ES] El almacenamiento de energía se ha convertido en un componente fundamental en los sistemas de energía renovable, especialmente aquellos que incluyen baterías. De allí, la necesidad de buscar métodos de control eficientes que ayuden a proteger y prolongar la vida útil de la batería. Dentro de los métodos de control reportados en la literatura, el más utilizado es el de corriente constante - voltaje constante. Otros métodos como el control con lógica difusa o el modelo de control predictivo han demostrado ser más eficientes que los métodos tradicionales, ya que reducen el tiempo de carga, mitigan el aumento de la temperatura y mantienen el estado de carga dentro de los límites seguros. Sin embargo, en los procesos de carga y descarga, algunos de los parámetros no están controlados por el usuario de la batería, convirtiéndose ésta en una de las causas que provoca el envejecimiento de las baterías, una reducción del ciclo de vida y, por ende, un reemplazo prematuro de la batería. En esta tesis doctoral, se usa el modelo de batería propuesto por Copetti para simular el voltaje de carga y descarga de un banco de baterías de plomo-ácido e identificar aquellos parámetros que afectan el rendimiento de la batería.
El modelo se valida sobre medidas reales tomadas de un sistema de almacenamiento de energías basado en baterías instalado en el Laboratorio de Energías Renovables (LadER) ubicado en el departamento del Chocó, Colombia.
Para ajustar el modelo e identificar los parámetros internos del banco de baterías se implementan y se comparan tres algoritmos evolutivos: optimización por enjambre de partículas - PSO, búsqueda de cuco - CS y optimización por enjambre de partículas+perturbación - PSO+P. Siendo este último una nueva propuesta en la que se introduce una perturbación periódica en la población para evitar que el algoritmo caiga en mínimos locales. La perturbación consiste en una nueva población basada en la mejor solución global que permita la reactivación del algoritmo PSO.
Los parámetros internos que están asociados a la capacidad de la batería son usados para estimar el estado de salud del sistema de almacenamiento de energía en baterías, encontrándose que éste perdió un 5% de su capacidad nominal, por lo que su estado de salud se estima en un 95%. Adicionalmente, el uso de análisis de componentes principales (PCA) es propuesto para realizar un diagnóstico del sistema. El modelo de análisis de componentes principales se aplica a un conjunto de parámetros asociados a la capacidad, resistencia interna y voltaje de circuito abierto de un sistema de almacenamiento de energía en baterías. El modelo PCA conserva las 5 primeras componentes que recolectan el 80.25% de la variabilidad total. Durante la prueba en condiciones de operación real, el modelo PCA, diagnosticó una degradación del estado de salud más rápido que el controlador de batería comercial. Sin embargo, un cambio en los modos de carga, llevó a una recuperación de la batería que también fue monitoreada por el algoritmo propuesto. Finalmente, se proponen acciones de control que llevan al sistema de almacenamiento de energía en baterías a funcionar en condiciones normales. / [CA] l'emmagatzematge d'energia s'ha convertit en un component fonamental en els sistemes d'energia renovable, especialment aquells que inclouen bateries. D'allí, la necessitat de buscar mètodes de control eficients que ajudin a protegir i allargar la vida útil de la bateria. Dins dels mètodes de control reportats en la literatura, el més utilitzat és el de corrent constant - voltatge constant. Altres mètodes com el control amb lògica difusa o el model de control predictiu han demostrat ser més eficients que els mètodes tradicionals, ja que redueixen el temps de càrrega, mitiguen l'augment de la temperatura i mantenen l'estat de càrrega dins dels límits segurs. No obstant això, en els processos de càrrega i descàrrega, alguns dels paràmetres no estan controlats per l'usuari de la bateria, convertint-se aquesta en una de les causes que provoca l'envelliment de les bateries, una reducció del cicle de vida i, per tant, un reemplaçament prematur de la bateria. En aquesta tesi doctoral, s'usa el model de bateria proposat per Copetti per simular el voltatge de càrrega i descàrrega d'un banc de bateries de plom-àcid i identificar aquells paràmetres que afecten el rendiment de la bateria.
El model es valida sobre mesures reals preses d'un sistema d'emmagatzematge d'energies en bateries instal·lat al Laboratori d'Energies Renovables (líder) situat en el departament del Chocó, Colòmbia.
Per ajustar el model i identificar els paràmetres interns del banc de bateries s'implementen i es comparen tres algorismes evolutius: optimització per eixam de partícules - PSO, recerca de cucut - CS i optimització per eixam de partícules + pertorbació - PSO + P. Sent aquest últim una nova proposta en la qual s'introdueix una pertorbació periòdica en la població per evitar que l'algoritme caigui en mínims locals. La pertorbació consisteix en una nova població basada en la millor solució global que permeti la reactivació de l'algoritme PSO.
Els paràmetres interns que estan associats a la capacitat de la bateria són usats per estimar l'estat de salut del sistema d'emmagatzematge d'energia en bateries, trobant-se que aquest va perdre un 5% de la seva capacitat nominal, de manera que el seu estat de salut s'estima en un 95%. Addicionalment, l'ús d'anàlisi de components principals (PCA) és proposat per realitzar un diagnòstic del sistema. El model d'anàlisi de components principals s'aplica a un conjunt de paràmetres associats a la capacitat, resistència interna i voltatge de circuit obert d'un sistema d'emmagatzematge d'energia en bateries. El model PCA conserva les 5 primeres components que recullen el 80.25% de la variabilitat total. Durant la prova en condicions d'operació real, el model PCA, va diagnosticar una degradació de l'estat de salut més ràpid que el controlador de bateria comercial. No obstant això, un canvi en les maneres de càrrega, va portar a una recuperació de la bateria que també va ser monitoritzada per l'algoritme proposat. Finalment, es proposen accions de control que porten al sistema d'emmagatzematge d'energia en bateries a funcionar en condicions normals. / [EN] Energy storage has become a fundamental component in renewable energy systems, especially those that include batteries. Hence, the need to look for efficient controls methods, which help to protect and prolong the battery life expectancy. Among the control methods reported in the literature, the most used is the constant current - constant voltage. Other methods such as fuzzy logic control or the model predictive control have proven to be more efficient than traditional methods, since they reduce the charging time, mitigate the increase in temperature and maintain the state of charge within the system the safe limits. However, in the charging and discharging processes, some of the parameters are not controlled by the user of the battery, this being one of the causes that leads to the aging batteries, a reduction in the life cycle, and therefore, a premature replacement of the battery. Therefore, in this doctoral thesis, the battery model proposed by Copetti is used to simulate the charge and discharge voltage of a battery of lead-acid batteries and identify those parameters that affect battery performance.
The model is validated on real measurements, taken from a battery energy storage system installed in the Renewable Energy Laboratory (LadER) located in the department of Chocó, Colombia.
To fitting the model and identify the internal parameters of the battery bank, three evolutionary algorithms are implemented and compared (particle swarm optimization - PSO, cuckoo search - CS and particle swarm optimization + perturbance - PSO + P), where PSO + P is a new proposal, in which a periodic perturbance is introduced in the population, to avoid that the algorithm falls at local minimums. The perturbance consists of a new population based on the best global solution that allows the reactivation of the PSO algorithm.
The internal parameters that are associated with the battery capacity are used to estimate the state of health of the battery energy storage system, found that it lost 5% of its nominal capacity, so that its state of health estimated at 95%. Additionally, the use of principal component analysis (PCA) is proposed to perform a system diagnosis. The principal component analysis model is applied on parameters set associated with the capacity, internal resistance and open circuit voltage of a battery energy storage system. The PCA model conserves the first 5 components, which collect 80.25% of the total variability. During the test under real operating conditions, the PCA model diagnosed a state of health degradation faster than the commercial battery controller. However, a change in charging modes led to a recovery of the battery that was also monitored by the proposed algorithm. Finally, control actions are proposed that lead to the battery energy storage system to operate under normal conditions. / Al proyecto “Implementación de un programa de desarrollo e investigación de energías renovables en el departamento del Chocó”—BPIN: 20130000100285; COLCIENCIAS (Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia) y a la Universidad Tecnológica del Chocó “Diego Luis Córdoba” por el apoyo financiero recibido durante todo este proceso, para que este trabajo de tesis llegará a buen puerto. / Banguero Palacios, E. (2020). Modelado, estudio y validación experimental de la influencia de los parámetros internos en el rendimiento de sistemas de almacenamiento de energía basados en baterías. Aplicación al caso del Departamento del Chocó (Colombia) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138754

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/138754
Date12 March 2020
CreatorsBanguero Palacios, Edison
ContributorsCorrecher Salvador, Antonio, Pérez-Navarro Gómez, Ángel, Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials, Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia, Universidad Tecnológica del Chocó, Sistema General de Regalías de Colombia
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess
Relationinfo:eu-repo/grantAgreement/SGR//SGR%2FBPIN%2F20130000100285/

Page generated in 0.0034 seconds