Return to search

An assessment of impacts of landfill composition on soil quality, heavy metal and plant health : a case of Lumberstewart landfill in Bulawayo, Zimbabwe

Landfills have served as the major sites for waste disposal in both developed and developing countries. Upon closure of a landfill site, the surface could be converted to a golf course, recreation park, playground, animal refuge, tennis court and industrial site. Even when closed, landfills still have the potential to contaminate the surrounding environment as a result of the migration of leachate from decomposing waste contained in the site. This study focused on assessing the
impacts of a closed landfill on soils and plants at Lumberstewart closed landfill site in Bulawayo, Zimbabwe. Soil samples were collected at three different depths (0-30 cm, 30 - 60 cm and 60-90 cm) at the landfill and a control site. The soil samples were analysed for their texture, pH, electrical conductivity, organic matter content, cation exchange capacity and concentrations of Cd, Cu, Cr, Fe, Ni and Zn. Samples of jimson weed and pigweed growing at the closed landfill and the control
site were collected from the same sites where soil samples were collected, and the concentrations of the same set of heavy metals in these weeds determined. Soil samples were digested using EPA
method 3050B: Acid Digestion of Sediments, Sludge and soils whereas nitric acid and hydrogen peroxide was used for digestion of plant samples. Both plant and soil digests were analyzed for heavy metals concentrations using Flame Atomic Absorption Spectrometry (AAS). Soils from the landfill as well as the control site had a high content of sand with soil pH values which were alkaline. The electrical conductivity values of the soil samples were relatively low ranging from 0.39 to 1.67 dS/m, indicating low levels of salts in soils at the landfill. The concentrations of heavy metals at the closed landfill site were higher than the control site. Heavy metals concentrations in soils at the closed landfill followed the order Fe>Zn>Cu>Cr>Ni>Cd. Results indicated that Fe was exceptionally higher than the other metals with concentration values averaging 45690±17255 mg/kg. Cadmium on the other hand had the least concentration with values of 0.01±0.00 mg/kg.
Values of Enrichment Factors of heavy metals around the soil at different depths indicated that the enrichment of heavy metals increased with depth at the landfill up to 30-60 cm after which a
decrease was observed. Values for heavy metal Contamination Factor of soils around the landfill ranged from low concentration (CF<1) to very high concentration (CF>6). The Pollution Load Index (PLI) values for the soil at the Lumberstewart landfill indicated that all sites were polluted (PLI>1). Site 6 had significantly higher mean concentration of heavy metals in soils at the landfill whereas site 11 had the least. The concentrations of Cd and Ni in soils at the landfill were below
permissible limits of South African National Norms and Standards (NNS) as prescribed by NEMA (2008) in South Africa whereas Cr, Cu and Zn in soils were above the NNS permissible limits.
Heavy metal concentrations in soils at the landfill were above World Health (WHO) permissible limits except for Cd which was equal (0.01 mg/kg) to the permissible values of Cd in the soils at sites 5, 8, 9, 10, 11 and 12. Mean concentrations of heavy metals in jimson weed and pigweed were in the order Fe>Zn>Cu>Cr>Ni>Cd. The concentrations of Cd, Cr, Cu, Fe and Zn in both plants from all sites at the landfill were significantly higher than the control site. Heavy metal transfer coefficient for both plants indicated that heavy metal uptake was more species dependent than soil heavy metal concentration dependent. The results from this research indicate that though the Lumberstewart Landfill has been closed, it is still affecting the soils in the vicinity of the
landfill. Plants and water around the Lumberstewart closed landfill could be at risk from heavy metal contamination. High concentrations of heavy metals observed in the soil could present a health risk to communities should they decide to use the landfill site for arable purposes. / Environmental Sciences / M. Sc. (Environmental Science)

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:unisa/oai:uir.unisa.ac.za:10500/27575
Date02 1900
CreatorsMakuleke, Peace
ContributorsNgole-Jeme, V. M.
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
Format1 online resource (xiii, 87 leaves) : illustrations, color graphs, color photographs, application/pdf

Page generated in 0.0031 seconds