<p> Amoeboid Motion is thought to be due to the action of an actomyosin-
like protein present in the cytoplasm of amoeba. A co-ordinated net-
0 work of microfilaments of the actomyosin-like protein, 70 A in diameter,
may be the mechanical means of accomplishing amoeboid motion. The microfilaments
formed of the actomyosin-like protein, may be capable of rapid
association and dissociation in vivo.
In this thesis, the cytoplasm of Naegleria gruberi amoeba has been
shown to possess a protein similar to actomyosin. Characterization of the
ATPase activity, superprecipitating ability, electrophoretic behaviour and
microfilament producing ability reveal that the actomyosin-like protein
of Naegleria gruberi amoeba is quite similar to the analogous protein in
Physarum polycephalum. Naeqleria gruberi may be an ideal organism in which
to study the interconversion of one form of a biologically active macromolecule
to another., In different stages of the life cycle, amoeboid motion,
flagellar beating and mitotic spindles are present. It is possible
that the same contractile molecules in different forms may perform different
functions. </P> / Thesis / Master of Science (MSc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/18507 |
Date | 05 1900 |
Creators | Lastovica, Albert J. |
Contributors | Dingle, A. D., Biology |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Page generated in 0.0018 seconds