Return to search

Molekulární mechanismy invasivity u nádorových buněk / Molecular mechanisms of amoeboid invasion of cancer cells

Tumour cell invasion is one of the most critical steps in malignant progression. It includes a broad spectrum of mechanisms, including both individual and collective cell migration, which enables them to spread towards adjacent tissue, and form new metastases. Understanding the mechanisms of cell spreading, and invasion, is crucial for effective anticancer therapy. Two modes of individual migration of tumour cells have been established in a three-dimensional environment. Mesenchymally migrating cells use proteases to cleave collagen bundles, and thus overcome the ECM barriers. Recently described protease-independent amoeboid mode of invasion has been discovered in studies of cancer cells with protease inhibitors. During my PhD study, I have focused on determining the molecular mechanisms involved in amoeboid invasion of tumour cells. We have examined invasive abilities in non-metastatic K2 and highly metastatic A3 rat sarcoma cell lines. We have shown that even though highly metastatic A3 rat sarcoma cells are of mesenchymal origin, they have upregulated Rho/ROCK signalling pathway. Moreover, A3 cells generate actomyosin-based mechanical forces at their leading edges to physically squeeze through the collagen fibrils by adopting an amoeboid phenotype. Amoeboid invasiveness is also less dependent on...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:330374
Date January 2012
CreatorsPaňková, Daniela
ContributorsBrábek, Jan, Dvořák, Michal, Vomastek, Tomáš
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0016 seconds