The role of adenosine as an endogenous neuromodulator is well established, but the mechanism(s) mediating the extensive modulatory and regulatory actions of adenosine have not yet been fully elucidated. In fact, although adenosine, through activation of adenosine A1 and A2A receptors, has been demonstrated as neuroprotective or neurodegenerative, respectively, little is known about the mechanism by which adenosine mediates these actions. In the hippocampus, essential physiological processes rely on adenosine signaling, including regulation of long-term potentiation (LTP) and long-term depression (LTD). Neuromodulation by adenosine is dominantly inhibitory in the hippocampus, mediated by the abundant and high-affinity adenosine A1 receptor. In ischemia and hypoxia, A1 receptor activation induces rapid synaptic depression which is mediated by multiple signaling pathways including the induction of excitatory AMPA glutamate receptor internalization, which inhibits synaptic transmission in the hippocampus. Considerable effort has been devoted to investigating the role of adenosine in ischemic stroke, due to the fact that in cerebral ischemia or hypoxia, extracellular levels of adenosine increase dramatically. This thesis explores the functional consequences of adenosine signaling in hypoxia and ischemia, which mediate GluA1 AMPA receptor subunit internalization. Three major serine/threonine protein phosphatases (PPs), PP1, PP2A, and PP2B are investigated and shown to mediate A1 receptor-mediated GluA1 internalization in hypoxic conditions in the rat hippocampus. Further experiments demonstrate the role of adenosine A2A receptors in potentiating hippocampal synaptic transmission in reperfusion by increasing GluA1 surface expression through increased phosphorylation of regulatory C-terminal phosphorylation sites of GluA1. The mechanism of extracellular adenosine regulation by equilibrative nucleoside transporters (ENTs) and casein kinase 2 (CK2) are examined and shown to interact in hypoxia/reperfusion experiments on hippocampal slices. Finally, using a pial vessel disruption (PVD) permanent focal cortical ischemia stroke model, experiments demonstrate increased adenosine tone in the hippocampus, which mediates increased adenosine-induced synaptic depression. CK2 inhibition was also neuroprotective after 20min hypoxia. This shows that adenosine tone is increased in the hippocampus after a small cortical stroke, implying a potential global effect of focal ischemia. Together, these studies further reveal the paramount role of adenosine as a neuromodulator in the hippocampus during neuronal insults, furthering our understanding of the mechanism of neuronal death in hypoxic and ischemic conditions.The role of adenosine as an endogenous neuromodulator is well established, but the mechanism(s) mediating the extensive modulatory and regulatory actions of adenosine have not yet been fully elucidated. In fact, although adenosine, through activation of adenosine A1 and A2A receptors, has been demonstrated as neuroprotective or neurodegenerative, respectively, little is known about the mechanism by which adenosine mediates these actions. In the hippocampus, essential physiological processes rely on adenosine signaling, including regulation of long-term potentiation (LTP) and long-term depression (LTD). Neuromodulation by adenosine is dominantly inhibitory in the hippocampus, mediated by the abundant and high-affinity adenosine A1 receptor. In ischemia and hypoxia, A1 receptor activation induces rapid synaptic depression which is mediated by multiple signaling pathways including the induction of excitatory AMPA glutamate receptor internalization, which inhibits synaptic transmission in the hippocampus. Considerable effort has been devoted to investigating the role of adenosine in ischemic stroke, due to the fact that in cerebral ischemia or hypoxia, extracellular levels of adenosine increase dramatically. This thesis explores the functional consequences of adenosine signaling in hypoxia and ischemia, which mediate GluA1 AMPA receptor subunit internalization. Three major serine/threonine protein phosphatases (PPs), PP1, PP2A, and PP2B are investigated and shown to mediate A1 receptor-mediated GluA1 internalization in hypoxic conditions in the rat hippocampus. Further experiments demonstrate the role of adenosine A2A receptors in potentiating hippocampal synaptic transmission in reperfusion by increasing GluA1 surface expression through increased phosphorylation of regulatory C-terminal phosphorylation sites of GluA1. The mechanism of extracellular adenosine regulation by equilibrative nucleoside transporters (ENTs) and casein kinase 2 (CK2) are examined and shown to interact in hypoxia/reperfusion experiments on hippocampal slices. Finally, using a pial vessel disruption (PVD) permanent focal cortical ischemia stroke model, experiments demonstrate increased adenosine tone in the hippocampus, which mediates increased adenosine-induced synaptic depression. CK2 inhibition was also neuroprotective after 20min hypoxia. This shows that adenosine tone is increased in the hippocampus after a small cortical stroke, implying a potential global effect of focal ischemia. Together, these studies further reveal the paramount role of adenosine as a neuromodulator in the hippocampus during neuronal insults, furthering our understanding of the mechanism of neuronal death in hypoxic and ischemic conditions.
Identifer | oai:union.ndltd.org:USASK/oai:ecommons.usask.ca:10388/ETD-2014-09-1712 |
Date | 2014 September 1900 |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text, thesis |
Page generated in 0.0167 seconds