Amphibian alkaloids are attractive targets for synthesis due to their biological activity. An important class of amphibian alkaloids is the 2,5-disubstituted pyrrolidine-based family of compounds. There are many synthetic approaches for the preparation of the trans-2,5- disubstituted pyrrolidines, but methods for the construction of the cis-2,5-pyrrolidines are limited. Therefore, it was desired to develop an enantioselective approach for the preparation of cis-2,5-disubsituted pyrrolidines. (+)-Tropin-2-one derived from cocaine was used as starting material to exploit the inherent stereochemistry for construction of the cis-pyrrolidine ring. This permitted the unequivocal assignment of the absolute configuration of the target pyrrolidine. The structurally simple pyrrolidine alkaloid, 225H, was selected as a target to develop a general synthetic approach. The enantioselective synthesis of 225H was achieved in nine steps and good overall yield. The search for potent cannabinoid receptor partial agonist ligands as potential marijuana addiction therapeutic agents has led to an investigation of the synthesis of diaryl ether hybrid analogues of BAY 59-3074. A series of 2-(3-alkyl-5-hydroxyphenoxy)-6- (trifluoromethyl)benzonitriles, 3-(2-cyano-3-(trifluoromethyl)phenoxy)phenylalkanoates, and (3- (benzyloxy)phenoxy)-6-(trifluoromethyl)benzonitriles were synthesized and evaluated in vitro for CB1 affinity. The olivetol diaryl ether analogue was the most potent ligand of the alkyl series, but the diaryl ester analogues exhibited modest affinity for CB1 receptors. The most potent compound of the series was the 2-(3-(benzyloxy)phenoxy)-6- (trifluoromethyl)benzonitrile.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-2084 |
Date | 20 December 2009 |
Creators | Noble, April R. |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0027 seconds