This doctoral thesis is dedicated to the synthesis and characterization of novel functionalized hybrid structures for biomedical purposes. Systems reported in this work can be subdivided into the two main groups: natural-based materials and synthetic amphiphilic block copolymers. Both groups were studied as perspective theranostic agents for medical applications. In the first group, natural polysaccharides glycogen and mannan were selected as starting materials for preparation of novel nanoconjugates that possess ability for multimodal detection in vivo. Because grafting of natural macromolecules with synthetic polymers generally slows down the biodegradation rate, both polysaccharides were modified in two different ways to form nanoprobes with or without poly(2-methyl-2-oxazoline)s chains. The prepared nanoconjugates were functionalized with N-hydroxysuccinimide-activated fluorescence and magnetic resonance imaging labels. The resulting materials were tested both in vitro and in vivo and were shown to be completely biocompatible, biodegradable and exhibit some extra benefits in terms of their practical usage in biomedicine. Glycogen was functionalized with allyl and propargyl groups with following freeze-drying from aqueous solutions to form nano- and microfibrous materials. The presence of both...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:384498 |
Date | January 2018 |
Creators | Rabyk, Mariia |
Contributors | Štěpánek, Petr, Sedláková, Zdeňka, Kotek, Jan |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds